Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 ) |
2 |
1
|
naryfvalel |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋 ↑m ( 0 ..^ 𝑁 ) ) ⟶ 𝑋 ) ) |
3 |
|
wrdnval |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑋 ↑m ( 0 ..^ 𝑁 ) ) ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑋 ↑m ( 0 ..^ 𝑁 ) ) ) |
5 |
4
|
feq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 : { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⟶ 𝑋 ↔ 𝐹 : ( 𝑋 ↑m ( 0 ..^ 𝑁 ) ) ⟶ 𝑋 ) ) |
6 |
2 5
|
bitr4d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ↔ 𝐹 : { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⟶ 𝑋 ) ) |