Metamath Proof Explorer


Theorem naryfvalelwrdf

Description: An n-ary (endo)function on a set X expressed as a function over the set of words on X of length n . (Contributed by AV, 4-Jun-2024)

Ref Expression
Assertion naryfvalelwrdf ( ( 𝑁 ∈ ℕ0𝑋𝑉 ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ↔ 𝐹 : { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⟶ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 eqid ( 0 ..^ 𝑁 ) = ( 0 ..^ 𝑁 )
2 1 naryfvalel ( ( 𝑁 ∈ ℕ0𝑋𝑉 ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋m ( 0 ..^ 𝑁 ) ) ⟶ 𝑋 ) )
3 wrdnval ( ( 𝑋𝑉𝑁 ∈ ℕ0 ) → { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑋m ( 0 ..^ 𝑁 ) ) )
4 3 ancoms ( ( 𝑁 ∈ ℕ0𝑋𝑉 ) → { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑋m ( 0 ..^ 𝑁 ) ) )
5 4 feq2d ( ( 𝑁 ∈ ℕ0𝑋𝑉 ) → ( 𝐹 : { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⟶ 𝑋𝐹 : ( 𝑋m ( 0 ..^ 𝑁 ) ) ⟶ 𝑋 ) )
6 2 5 bitr4d ( ( 𝑁 ∈ ℕ0𝑋𝑉 ) → ( 𝐹 ∈ ( 𝑁 -aryF 𝑋 ) ↔ 𝐹 : { 𝑤 ∈ Word 𝑋 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ⟶ 𝑋 ) )