| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 0 ..^ 𝑁 )  =  ( 0 ..^ 𝑁 ) | 
						
							| 2 | 1 | naryfvalel | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑉 )  →  ( 𝐹  ∈  ( 𝑁 -aryF  𝑋 )  ↔  𝐹 : ( 𝑋  ↑m  ( 0 ..^ 𝑁 ) ) ⟶ 𝑋 ) ) | 
						
							| 3 |  | wrdnval | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  { 𝑤  ∈  Word  𝑋  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 }  =  ( 𝑋  ↑m  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑉 )  →  { 𝑤  ∈  Word  𝑋  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 }  =  ( 𝑋  ↑m  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 5 | 4 | feq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑉 )  →  ( 𝐹 : { 𝑤  ∈  Word  𝑋  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 } ⟶ 𝑋  ↔  𝐹 : ( 𝑋  ↑m  ( 0 ..^ 𝑁 ) ) ⟶ 𝑋 ) ) | 
						
							| 6 | 2 5 | bitr4d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑉 )  →  ( 𝐹  ∈  ( 𝑁 -aryF  𝑋 )  ↔  𝐹 : { 𝑤  ∈  Word  𝑋  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 } ⟶ 𝑋 ) ) |