| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 }  =  { 𝑤  ∣  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  𝑁 ) } | 
						
							| 2 |  | ovexd | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 0 ..^ 𝑁 )  ∈  V ) | 
						
							| 3 |  | elmapg | ⊢ ( ( 𝑉  ∈  𝑋  ∧  ( 0 ..^ 𝑁 )  ∈  V )  →  ( 𝑤  ∈  ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) )  ↔  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) | 
						
							| 4 | 2 3 | syldan | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑤  ∈  ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) )  ↔  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) | 
						
							| 5 |  | iswrdi | ⊢ ( 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 )  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 7 |  | fnfzo0hash | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 )  →  ( ♯ ‘ 𝑤 )  =  𝑁 ) | 
						
							| 8 | 7 | adantll | ⊢ ( ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 )  →  ( ♯ ‘ 𝑤 )  =  𝑁 ) | 
						
							| 9 | 6 8 | jca | ⊢ ( ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  ∧  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  𝑁 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  𝑁 ) ) ) | 
						
							| 11 |  | wrdf | ⊢ ( 𝑤  ∈  Word  𝑉  →  𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑉 ) | 
						
							| 12 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑤 )  =  𝑁  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 13 | 12 | feq2d | ⊢ ( ( ♯ ‘ 𝑤 )  =  𝑁  →  ( 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑉  ↔  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) | 
						
							| 14 | 11 13 | syl5ibcom | ⊢ ( 𝑤  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑤 )  =  𝑁  →  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  𝑁 )  →  𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) | 
						
							| 16 | 10 15 | impbid1 | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  𝑁 ) ) ) | 
						
							| 17 | 4 16 | bitrd | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑤  ∈  ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  𝑁 ) ) ) | 
						
							| 18 | 17 | eqabdv | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) )  =  { 𝑤  ∣  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  𝑁 ) } ) | 
						
							| 19 | 1 18 | eqtr4id | ⊢ ( ( 𝑉  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  { 𝑤  ∈  Word  𝑉  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 }  =  ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) ) ) |