Metamath Proof Explorer


Theorem wrdnval

Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Proof shortened by AV, 13-May-2020)

Ref Expression
Assertion wrdnval VXN0wWordV|w=N=V0..^N

Proof

Step Hyp Ref Expression
1 df-rab wWordV|w=N=w|wWordVw=N
2 ovexd VXN00..^NV
3 elmapg VX0..^NVwV0..^Nw:0..^NV
4 2 3 syldan VXN0wV0..^Nw:0..^NV
5 iswrdi w:0..^NVwWordV
6 5 adantl VXN0w:0..^NVwWordV
7 fnfzo0hash N0w:0..^NVw=N
8 7 adantll VXN0w:0..^NVw=N
9 6 8 jca VXN0w:0..^NVwWordVw=N
10 9 ex VXN0w:0..^NVwWordVw=N
11 wrdf wWordVw:0..^wV
12 oveq2 w=N0..^w=0..^N
13 12 feq2d w=Nw:0..^wVw:0..^NV
14 11 13 syl5ibcom wWordVw=Nw:0..^NV
15 14 imp wWordVw=Nw:0..^NV
16 10 15 impbid1 VXN0w:0..^NVwWordVw=N
17 4 16 bitrd VXN0wV0..^NwWordVw=N
18 17 eqabdv VXN0V0..^N=w|wWordVw=N
19 1 18 eqtr4id VXN0wWordV|w=N=V0..^N