Metamath Proof Explorer


Theorem wrdmap

Description: Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Assertion wrdmap VXN0WWordVW=NWV0..^N

Proof

Step Hyp Ref Expression
1 fveqeq2 w=Ww=NW=N
2 1 elrab WwWordV|w=NWWordVW=N
3 wrdnval VXN0wWordV|w=N=V0..^N
4 3 eleq2d VXN0WwWordV|w=NWV0..^N
5 2 4 bitr3id VXN0WWordVW=NWV0..^N