Metamath Proof Explorer


Theorem hashwrdn

Description: If there is only a finite number of symbols, the number of words of a fixed length over these sysmbols is the number of these symbols raised to the power of the length. (Contributed by Alexander van der Vekens, 25-Mar-2018)

Ref Expression
Assertion hashwrdn VFinN0wWordV|w=N=VN

Proof

Step Hyp Ref Expression
1 wrdnval VFinN0wWordV|w=N=V0..^N
2 1 fveq2d VFinN0wWordV|w=N=V0..^N
3 fzofi 0..^NFin
4 hashmap VFin0..^NFinV0..^N=V0..^N
5 3 4 mpan2 VFinV0..^N=V0..^N
6 hashfzo0 N00..^N=N
7 6 oveq2d N0V0..^N=VN
8 5 7 sylan9eq VFinN0V0..^N=VN
9 2 8 eqtrd VFinN0wWordV|w=N=VN