| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdnval | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  { 𝑤  ∈  Word  𝑉  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 }  =  ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ { 𝑤  ∈  Word  𝑉  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 } )  =  ( ♯ ‘ ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 3 |  | fzofi | ⊢ ( 0 ..^ 𝑁 )  ∈  Fin | 
						
							| 4 |  | hashmap | ⊢ ( ( 𝑉  ∈  Fin  ∧  ( 0 ..^ 𝑁 )  ∈  Fin )  →  ( ♯ ‘ ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) ) )  =  ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 5 | 3 4 | mpan2 | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) ) )  =  ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 6 |  | hashfzo0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  𝑁 ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) )  =  ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) | 
						
							| 8 | 5 7 | sylan9eq | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝑉  ↑m  ( 0 ..^ 𝑁 ) ) )  =  ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) | 
						
							| 9 | 2 8 | eqtrd | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ { 𝑤  ∈  Word  𝑉  ∣  ( ♯ ‘ 𝑤 )  =  𝑁 } )  =  ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |