| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m ∅ ) ) |
| 2 |
1
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) |
| 5 |
2 4
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m 𝑦 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) |
| 11 |
8 10
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 17 |
14 16
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑m 𝑥 ) = ( 𝐴 ↑m 𝐵 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑥 = 𝐵 → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑥 = 𝐵 → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) |
| 23 |
20 22
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑥 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 25 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 26 |
25
|
nn0cnd |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 27 |
26
|
exp0d |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ↑ 0 ) = 1 ) |
| 28 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 29 |
28
|
oveq2i |
⊢ ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ 0 ) |
| 30 |
29
|
a1i |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ 0 ) ) |
| 31 |
|
mapdm0 |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ↑m ∅ ) = { ∅ } ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ♯ ‘ { ∅ } ) ) |
| 33 |
|
0ex |
⊢ ∅ ∈ V |
| 34 |
|
hashsng |
⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) |
| 35 |
33 34
|
mp1i |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ { ∅ } ) = 1 ) |
| 36 |
32 35
|
eqtrd |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = 1 ) |
| 37 |
27 30 36
|
3eqtr4rd |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ∅ ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) |
| 38 |
|
oveq1 |
⊢ ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 39 |
|
vex |
⊢ 𝑦 ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ V ) |
| 41 |
|
vsnex |
⊢ { 𝑧 } ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } ∈ V ) |
| 43 |
|
elex |
⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ V ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐴 ∈ V ) |
| 45 |
|
simprr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 46 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
| 47 |
45 46
|
sylibr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 48 |
|
mapunen |
⊢ ( ( ( 𝑦 ∈ V ∧ { 𝑧 } ∈ V ∧ 𝐴 ∈ V ) ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) |
| 49 |
40 42 44 47 48
|
syl31anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) |
| 50 |
|
simpl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐴 ∈ Fin ) |
| 51 |
|
simprl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) |
| 52 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 53 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 54 |
51 52 53
|
sylancl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 55 |
|
mapfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 56 |
50 54 55
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 57 |
|
mapfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝐴 ↑m 𝑦 ) ∈ Fin ) |
| 58 |
57
|
adantrr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m 𝑦 ) ∈ Fin ) |
| 59 |
|
mapfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) |
| 60 |
50 52 59
|
sylancl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) |
| 61 |
|
xpfi |
⊢ ( ( ( 𝐴 ↑m 𝑦 ) ∈ Fin ∧ ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) → ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ∈ Fin ) |
| 62 |
58 60 61
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ∈ Fin ) |
| 63 |
|
hashen |
⊢ ( ( ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ∧ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ↔ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 64 |
56 62 63
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ↔ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ≈ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 65 |
49 64
|
mpbird |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 66 |
|
hashxp |
⊢ ( ( ( 𝐴 ↑m 𝑦 ) ∈ Fin ∧ ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ) → ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 67 |
58 60 66
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( ( 𝐴 ↑m 𝑦 ) × ( 𝐴 ↑m { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) ) ) |
| 68 |
|
vex |
⊢ 𝑧 ∈ V |
| 69 |
68
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ V ) |
| 70 |
50 69
|
mapsnend |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↑m { 𝑧 } ) ≈ 𝐴 ) |
| 71 |
|
hashen |
⊢ ( ( ( 𝐴 ↑m { 𝑧 } ) ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) = ( ♯ ‘ 𝐴 ) ↔ ( 𝐴 ↑m { 𝑧 } ) ≈ 𝐴 ) ) |
| 72 |
60 50 71
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) = ( ♯ ‘ 𝐴 ) ↔ ( 𝐴 ↑m { 𝑧 } ) ≈ 𝐴 ) ) |
| 73 |
70 72
|
mpbird |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) = ( ♯ ‘ 𝐴 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ ( 𝐴 ↑m { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 75 |
65 67 74
|
3eqtrd |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 76 |
|
hashunsng |
⊢ ( 𝑧 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 77 |
76
|
elv |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 79 |
78
|
oveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 80 |
26
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 81 |
|
hashcl |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 82 |
81
|
ad2antrl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 83 |
80 82
|
expp1d |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 84 |
79 83
|
eqtrd |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) |
| 85 |
75 84
|
eqeq12d |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) = ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ 𝐴 ) ) ) ) |
| 86 |
38 85
|
imbitrrid |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 87 |
86
|
expcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐴 ∈ Fin → ( ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 88 |
87
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝑦 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) → ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 89 |
6 12 18 24 37 88
|
findcard2s |
⊢ ( 𝐵 ∈ Fin → ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) |
| 90 |
89
|
impcom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ↑m 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) |