| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovexd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∈ V ) |
| 2 |
|
ovexd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m 𝐴 ) ∈ V ) |
| 3 |
|
ovexd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m 𝐵 ) ∈ V ) |
| 4 |
2 3
|
xpexd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ∈ V ) |
| 5 |
|
elmapi |
⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
| 6 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 7 |
|
fssres |
⊢ ( ( 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) |
| 9 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 10 |
|
fssres |
⊢ ( ( 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) |
| 11 |
5 9 10
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) |
| 12 |
8 11
|
jca |
⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ∧ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) |
| 13 |
|
opelxp |
⊢ ( 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ↔ ( ( 𝑥 ↾ 𝐴 ) ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝑥 ↾ 𝐵 ) ∈ ( 𝐶 ↑m 𝐵 ) ) ) |
| 14 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐶 ∈ 𝑋 ) |
| 15 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ∈ 𝑉 ) |
| 16 |
14 15
|
elmapd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑥 ↾ 𝐴 ) ∈ ( 𝐶 ↑m 𝐴 ) ↔ ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) ) |
| 17 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ∈ 𝑊 ) |
| 18 |
14 17
|
elmapd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑥 ↾ 𝐵 ) ∈ ( 𝐶 ↑m 𝐵 ) ↔ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) |
| 19 |
16 18
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ( 𝑥 ↾ 𝐴 ) ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝑥 ↾ 𝐵 ) ∈ ( 𝐶 ↑m 𝐵 ) ) ↔ ( ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ∧ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) ) |
| 20 |
13 19
|
bitrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ↔ ( ( 𝑥 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ∧ ( 𝑥 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ) ) ) |
| 21 |
12 20
|
imbitrrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) |
| 22 |
|
xp1st |
⊢ ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐴 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐴 ) ) |
| 24 |
|
elmapi |
⊢ ( ( 1st ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐴 ) → ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ) |
| 26 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐵 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐵 ) ) |
| 28 |
|
elmapi |
⊢ ( ( 2nd ‘ 𝑦 ) ∈ ( 𝐶 ↑m 𝐵 ) → ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ) |
| 30 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 31 |
25 29 30
|
fun2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
| 32 |
31
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
| 33 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 34 |
15 17 33
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 35 |
14 34
|
elmapd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
| 36 |
32 35
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 37 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 38 |
37
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 39 |
25
|
adantrl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ) |
| 40 |
29
|
adantrl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ) |
| 41 |
|
res0 |
⊢ ( ( 1st ‘ 𝑦 ) ↾ ∅ ) = ∅ |
| 42 |
|
res0 |
⊢ ( ( 2nd ‘ 𝑦 ) ↾ ∅ ) = ∅ |
| 43 |
41 42
|
eqtr4i |
⊢ ( ( 1st ‘ 𝑦 ) ↾ ∅ ) = ( ( 2nd ‘ 𝑦 ) ↾ ∅ ) |
| 44 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 45 |
44
|
reseq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 1st ‘ 𝑦 ) ↾ ∅ ) ) |
| 46 |
44
|
reseq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ∅ ) ) |
| 47 |
43 45 46
|
3eqtr4a |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 48 |
|
fresaunres1 |
⊢ ( ( ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ∧ ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ∧ ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) = ( 1st ‘ 𝑦 ) ) |
| 49 |
39 40 47 48
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) = ( 1st ‘ 𝑦 ) ) |
| 50 |
|
fresaunres2 |
⊢ ( ( ( 1st ‘ 𝑦 ) : 𝐴 ⟶ 𝐶 ∧ ( 2nd ‘ 𝑦 ) : 𝐵 ⟶ 𝐶 ∧ ( ( 1st ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( ( 2nd ‘ 𝑦 ) ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) = ( 2nd ‘ 𝑦 ) ) |
| 51 |
39 40 47 50
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) = ( 2nd ‘ 𝑦 ) ) |
| 52 |
49 51
|
opeq12d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 53 |
38 52
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 𝑦 = 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 ) |
| 54 |
|
reseq1 |
⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → ( 𝑥 ↾ 𝐴 ) = ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) ) |
| 55 |
|
reseq1 |
⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → ( 𝑥 ↾ 𝐵 ) = ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) ) |
| 56 |
54 55
|
opeq12d |
⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 = 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ↔ 𝑦 = 〈 ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐴 ) , ( ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↾ 𝐵 ) 〉 ) ) |
| 58 |
53 57
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) → 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ) ) |
| 59 |
|
ffn |
⊢ ( 𝑥 : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 → 𝑥 Fn ( 𝐴 ∪ 𝐵 ) ) |
| 60 |
|
fnresdm |
⊢ ( 𝑥 Fn ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑥 ) |
| 61 |
5 59 60
|
3syl |
⊢ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑥 ) |
| 62 |
61
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑥 ) |
| 63 |
62
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → 𝑥 = ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
| 64 |
|
vex |
⊢ 𝑥 ∈ V |
| 65 |
64
|
resex |
⊢ ( 𝑥 ↾ 𝐴 ) ∈ V |
| 66 |
64
|
resex |
⊢ ( 𝑥 ↾ 𝐵 ) ∈ V |
| 67 |
65 66
|
op1std |
⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( 1st ‘ 𝑦 ) = ( 𝑥 ↾ 𝐴 ) ) |
| 68 |
65 66
|
op2ndd |
⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( 2nd ‘ 𝑦 ) = ( 𝑥 ↾ 𝐵 ) ) |
| 69 |
67 68
|
uneq12d |
⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) = ( ( 𝑥 ↾ 𝐴 ) ∪ ( 𝑥 ↾ 𝐵 ) ) ) |
| 70 |
|
resundi |
⊢ ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑥 ↾ 𝐴 ) ∪ ( 𝑥 ↾ 𝐵 ) ) |
| 71 |
69 70
|
eqtr4di |
⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) = ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) ) |
| 72 |
71
|
eqeq2d |
⊢ ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = ( 𝑥 ↾ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 73 |
63 72
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 → 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ) ) |
| 74 |
58 73
|
impbid |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) ) → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↔ 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ) ) |
| 75 |
74
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑥 ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) → ( 𝑥 = ( ( 1st ‘ 𝑦 ) ∪ ( 2nd ‘ 𝑦 ) ) ↔ 𝑦 = 〈 ( 𝑥 ↾ 𝐴 ) , ( 𝑥 ↾ 𝐵 ) 〉 ) ) ) |
| 76 |
1 4 21 36 75
|
en3d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐵 ) ) ) |