| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							findcard2s.1 | 
							⊢ ( 𝑥  =  ∅  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							findcard2s.2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							findcard2s.3 | 
							⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝜑  ↔  𝜃 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							findcard2s.4 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜏 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							findcard2s.5 | 
							⊢ 𝜓  | 
						
						
							| 6 | 
							
								
							 | 
							findcard2s.6 | 
							⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( 𝜒  →  𝜃 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ex | 
							⊢ ( 𝑦  ∈  Fin  →  ( ¬  𝑧  ∈  𝑦  →  ( 𝜒  →  𝜃 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							snssi | 
							⊢ ( 𝑧  ∈  𝑦  →  { 𝑧 }  ⊆  𝑦 )  | 
						
						
							| 9 | 
							
								
							 | 
							ssequn1 | 
							⊢ ( { 𝑧 }  ⊆  𝑦  ↔  ( { 𝑧 }  ∪  𝑦 )  =  𝑦 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylib | 
							⊢ ( 𝑧  ∈  𝑦  →  ( { 𝑧 }  ∪  𝑦 )  =  𝑦 )  | 
						
						
							| 11 | 
							
								
							 | 
							uncom | 
							⊢ ( { 𝑧 }  ∪  𝑦 )  =  ( 𝑦  ∪  { 𝑧 } )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtr3di | 
							⊢ ( 𝑧  ∈  𝑦  →  𝑦  =  ( 𝑦  ∪  { 𝑧 } ) )  | 
						
						
							| 13 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 14 | 
							
								13
							 | 
							eqvinc | 
							⊢ ( 𝑦  =  ( 𝑦  ∪  { 𝑧 } )  ↔  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝑥  =  ( 𝑦  ∪  { 𝑧 } ) ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							sylib | 
							⊢ ( 𝑧  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝑥  =  ( 𝑦  ∪  { 𝑧 } ) ) )  | 
						
						
							| 16 | 
							
								2
							 | 
							bicomd | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜒  ↔  𝜑 ) )  | 
						
						
							| 17 | 
							
								16 3
							 | 
							sylan9bb | 
							⊢ ( ( 𝑥  =  𝑦  ∧  𝑥  =  ( 𝑦  ∪  { 𝑧 } ) )  →  ( 𝜒  ↔  𝜃 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝑥  =  ( 𝑦  ∪  { 𝑧 } ) )  →  ( 𝜒  ↔  𝜃 ) )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							syl | 
							⊢ ( 𝑧  ∈  𝑦  →  ( 𝜒  ↔  𝜃 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							biimpd | 
							⊢ ( 𝑧  ∈  𝑦  →  ( 𝜒  →  𝜃 ) )  | 
						
						
							| 21 | 
							
								7 20
							 | 
							pm2.61d2 | 
							⊢ ( 𝑦  ∈  Fin  →  ( 𝜒  →  𝜃 ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 21
							 | 
							findcard2 | 
							⊢ ( 𝐴  ∈  Fin  →  𝜏 )  |