| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							findcard2d.ch | 
							⊢ ( 𝑥  =  ∅  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							findcard2d.th | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜃 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							findcard2d.ta | 
							⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝜓  ↔  𝜏 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							findcard2d.et | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝜓  ↔  𝜂 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							findcard2d.z | 
							⊢ ( 𝜑  →  𝜒 )  | 
						
						
							| 6 | 
							
								
							 | 
							findcard2d.i | 
							⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( 𝜃  →  𝜏 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							findcard2d.a | 
							⊢ ( 𝜑  →  𝐴  ∈  Fin )  | 
						
						
							| 8 | 
							
								
							 | 
							ssid | 
							⊢ 𝐴  ⊆  𝐴  | 
						
						
							| 9 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  𝐴  ∈  Fin )  | 
						
						
							| 10 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  ∅  →  ( 𝑥  ⊆  𝐴  ↔  ∅  ⊆  𝐴 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  ∅  →  ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  ↔  ( 𝜑  ∧  ∅  ⊆  𝐴 ) ) )  | 
						
						
							| 12 | 
							
								11 1
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  ∅  →  ( ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  →  𝜓 )  ↔  ( ( 𝜑  ∧  ∅  ⊆  𝐴 )  →  𝜒 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  𝐴  ↔  𝑦  ⊆  𝐴 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  ↔  ( 𝜑  ∧  𝑦  ⊆  𝐴 ) ) )  | 
						
						
							| 15 | 
							
								14 2
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  →  𝜓 )  ↔  ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝜃 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝑥  ⊆  𝐴  ↔  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  ↔  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) ) )  | 
						
						
							| 18 | 
							
								17 3
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  →  𝜓 )  ↔  ( ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 )  →  𝜏 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ⊆  𝐴  ↔  𝐴  ⊆  𝐴 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  ↔  ( 𝜑  ∧  𝐴  ⊆  𝐴 ) ) )  | 
						
						
							| 21 | 
							
								20 4
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  →  𝜓 )  ↔  ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  𝜂 ) ) )  | 
						
						
							| 22 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ∅  ⊆  𝐴 )  →  𝜒 )  | 
						
						
							| 23 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝜑 )  | 
						
						
							| 24 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 )  | 
						
						
							| 25 | 
							
								24
							 | 
							unssad | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑦  ⊆  𝐴 )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							jca | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝜑  ∧  𝑦  ⊆  𝐴 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							id | 
							⊢ ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 )  | 
						
						
							| 28 | 
							
								
							 | 
							vsnid | 
							⊢ 𝑧  ∈  { 𝑧 }  | 
						
						
							| 29 | 
							
								
							 | 
							elun2 | 
							⊢ ( 𝑧  ∈  { 𝑧 }  →  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							mp1i | 
							⊢ ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  𝑧  ∈  ( 𝑦  ∪  { 𝑧 } ) )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							sseldd | 
							⊢ ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  𝑧  ∈  𝐴 )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad2antll | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  𝐴 )  | 
						
						
							| 33 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ¬  𝑧  ∈  𝑦 )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eldifd | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  ( 𝐴  ∖  𝑦 ) )  | 
						
						
							| 35 | 
							
								23 25 34 6
							 | 
							syl12anc | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝜃  →  𝜏 ) )  | 
						
						
							| 36 | 
							
								26 35
							 | 
							embantd | 
							⊢ ( ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  ∧  ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝜃 )  →  𝜏 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ex | 
							⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝜃 )  →  𝜏 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							com23 | 
							⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝜃 )  →  ( ( 𝜑  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 )  →  𝜏 ) ) )  | 
						
						
							| 39 | 
							
								12 15 18 21 22 38
							 | 
							findcard2s | 
							⊢ ( 𝐴  ∈  Fin  →  ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  𝜂 ) )  | 
						
						
							| 40 | 
							
								9 39
							 | 
							mpcom | 
							⊢ ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  𝜂 )  | 
						
						
							| 41 | 
							
								8 40
							 | 
							mpan2 | 
							⊢ ( 𝜑  →  𝜂 )  |