Metamath Proof Explorer


Theorem hashsng

Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012) (Proof shortened by Mario Carneiro, 13-Feb-2013)

Ref Expression
Assertion hashsng ( 𝐴𝑉 → ( ♯ ‘ { 𝐴 } ) = 1 )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 en2sn ( ( 𝐴𝑉 ∧ 1 ∈ ℤ ) → { 𝐴 } ≈ { 1 } )
3 1 2 mpan2 ( 𝐴𝑉 → { 𝐴 } ≈ { 1 } )
4 snfi { 𝐴 } ∈ Fin
5 snfi { 1 } ∈ Fin
6 hashen ( ( { 𝐴 } ∈ Fin ∧ { 1 } ∈ Fin ) → ( ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ↔ { 𝐴 } ≈ { 1 } ) )
7 4 5 6 mp2an ( ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ↔ { 𝐴 } ≈ { 1 } )
8 3 7 sylibr ( 𝐴𝑉 → ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) )
9 1nn0 1 ∈ ℕ0
10 hashfz1 ( 1 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 1 ) ) = 1 )
11 9 10 ax-mp ( ♯ ‘ ( 1 ... 1 ) ) = 1
12 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
13 12 fveq2d ( 1 ∈ ℤ → ( ♯ ‘ ( 1 ... 1 ) ) = ( ♯ ‘ { 1 } ) )
14 11 13 syl5reqr ( 1 ∈ ℤ → ( ♯ ‘ { 1 } ) = 1 )
15 1 14 ax-mp ( ♯ ‘ { 1 } ) = 1
16 8 15 syl6eq ( 𝐴𝑉 → ( ♯ ‘ { 𝐴 } ) = 1 )