Metamath Proof Explorer


Theorem hashen1

Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019)

Ref Expression
Assertion hashen1 ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 hashsng ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 )
3 1 2 ax-mp ( ♯ ‘ { ∅ } ) = 1
4 3 eqcomi 1 = ( ♯ ‘ { ∅ } )
5 4 a1i ( 𝐴𝑉 → 1 = ( ♯ ‘ { ∅ } ) )
6 5 eqeq2d ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) )
7 simpr ( ( 𝐴𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) )
8 1nn0 1 ∈ ℕ0
9 3 8 eqeltri ( ♯ ‘ { ∅ } ) ∈ ℕ0
10 hashvnfin ( ( 𝐴𝑉 ∧ ( ♯ ‘ { ∅ } ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ∈ Fin ) )
11 9 10 mpan2 ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ∈ Fin ) )
12 11 imp ( ( 𝐴𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → 𝐴 ∈ Fin )
13 snfi { ∅ } ∈ Fin
14 hashen ( ( 𝐴 ∈ Fin ∧ { ∅ } ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) )
15 12 13 14 sylancl ( ( 𝐴𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) )
16 7 15 mpbid ( ( 𝐴𝑉 ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ) → 𝐴 ≈ { ∅ } )
17 16 ex ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) → 𝐴 ≈ { ∅ } ) )
18 hasheni ( 𝐴 ≈ { ∅ } → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) )
19 17 18 impbid1 ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { ∅ } ) ↔ 𝐴 ≈ { ∅ } ) )
20 df1o2 1o = { ∅ }
21 20 eqcomi { ∅ } = 1o
22 21 breq2i ( 𝐴 ≈ { ∅ } ↔ 𝐴 ≈ 1o )
23 22 a1i ( 𝐴𝑉 → ( 𝐴 ≈ { ∅ } ↔ 𝐴 ≈ 1o ) )
24 6 19 23 3bitrd ( 𝐴𝑉 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ 𝐴 ≈ 1o ) )