| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash1elsn.1 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  =  1 ) | 
						
							| 2 |  | hash1elsn.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝐴 ) | 
						
							| 3 |  | hash1elsn.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | hashen1 | ⊢ ( 𝐴  ∈  𝑉  →  ( ( ♯ ‘ 𝐴 )  =  1  ↔  𝐴  ≈  1o ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  =  1  ↔  𝐴  ≈  1o ) ) | 
						
							| 6 | 1 5 | mpbid | ⊢ ( 𝜑  →  𝐴  ≈  1o ) | 
						
							| 7 |  | en1 | ⊢ ( 𝐴  ≈  1o  ↔  ∃ 𝑥 𝐴  =  { 𝑥 } ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝐴  =  { 𝑥 } ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  { 𝑥 } )  →  𝐴  =  { 𝑥 } ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  { 𝑥 } )  →  𝐵  ∈  𝐴 ) | 
						
							| 11 | 10 9 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝐴  =  { 𝑥 } )  →  𝐵  ∈  { 𝑥 } ) | 
						
							| 12 |  | elsni | ⊢ ( 𝐵  ∈  { 𝑥 }  →  𝐵  =  𝑥 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝐴  =  { 𝑥 } )  →  𝐵  =  𝑥 ) | 
						
							| 14 | 13 | sneqd | ⊢ ( ( 𝜑  ∧  𝐴  =  { 𝑥 } )  →  { 𝐵 }  =  { 𝑥 } ) | 
						
							| 15 | 9 14 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  =  { 𝑥 } )  →  𝐴  =  { 𝐵 } ) | 
						
							| 16 | 8 15 | exlimddv | ⊢ ( 𝜑  →  𝐴  =  { 𝐵 } ) |