| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash1elsn.1 |  |-  ( ph -> ( # ` A ) = 1 ) | 
						
							| 2 |  | hash1elsn.2 |  |-  ( ph -> B e. A ) | 
						
							| 3 |  | hash1elsn.3 |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | hashen1 |  |-  ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) | 
						
							| 6 | 1 5 | mpbid |  |-  ( ph -> A ~~ 1o ) | 
						
							| 7 |  | en1 |  |-  ( A ~~ 1o <-> E. x A = { x } ) | 
						
							| 8 | 6 7 | sylib |  |-  ( ph -> E. x A = { x } ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ A = { x } ) -> A = { x } ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ A = { x } ) -> B e. A ) | 
						
							| 11 | 10 9 | eleqtrd |  |-  ( ( ph /\ A = { x } ) -> B e. { x } ) | 
						
							| 12 |  | elsni |  |-  ( B e. { x } -> B = x ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ph /\ A = { x } ) -> B = x ) | 
						
							| 14 | 13 | sneqd |  |-  ( ( ph /\ A = { x } ) -> { B } = { x } ) | 
						
							| 15 | 9 14 | eqtr4d |  |-  ( ( ph /\ A = { x } ) -> A = { B } ) | 
						
							| 16 | 8 15 | exlimddv |  |-  ( ph -> A = { B } ) |