Metamath Proof Explorer


Theorem hashen1

Description: A set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019)

Ref Expression
Assertion hashen1 AVA=1A1𝑜

Proof

Step Hyp Ref Expression
1 0ex V
2 hashsng V=1
3 1 2 ax-mp =1
4 3 eqcomi 1=
5 4 a1i AV1=
6 5 eqeq2d AVA=1A=
7 simpr AVA=A=
8 1nn0 10
9 3 8 eqeltri 0
10 hashvnfin AV0A=AFin
11 9 10 mpan2 AVA=AFin
12 11 imp AVA=AFin
13 snfi Fin
14 hashen AFinFinA=A
15 12 13 14 sylancl AVA=A=A
16 7 15 mpbid AVA=A
17 16 ex AVA=A
18 hasheni AA=
19 17 18 impbid1 AVA=A
20 df1o2 1𝑜=
21 20 eqcomi =1𝑜
22 21 breq2i AA1𝑜
23 22 a1i AVAA1𝑜
24 6 19 23 3bitrd AVA=1A1𝑜