| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdnval |  |-  ( ( V e. Fin /\ N e. NN0 ) -> { w e. Word V | ( # ` w ) = N } = ( V ^m ( 0 ..^ N ) ) ) | 
						
							| 2 | 1 | fveq2d |  |-  ( ( V e. Fin /\ N e. NN0 ) -> ( # ` { w e. Word V | ( # ` w ) = N } ) = ( # ` ( V ^m ( 0 ..^ N ) ) ) ) | 
						
							| 3 |  | fzofi |  |-  ( 0 ..^ N ) e. Fin | 
						
							| 4 |  | hashmap |  |-  ( ( V e. Fin /\ ( 0 ..^ N ) e. Fin ) -> ( # ` ( V ^m ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ ( # ` ( 0 ..^ N ) ) ) ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( V e. Fin -> ( # ` ( V ^m ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ ( # ` ( 0 ..^ N ) ) ) ) | 
						
							| 6 |  | hashfzo0 |  |-  ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) | 
						
							| 7 | 6 | oveq2d |  |-  ( N e. NN0 -> ( ( # ` V ) ^ ( # ` ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ N ) ) | 
						
							| 8 | 5 7 | sylan9eq |  |-  ( ( V e. Fin /\ N e. NN0 ) -> ( # ` ( V ^m ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ N ) ) | 
						
							| 9 | 2 8 | eqtrd |  |-  ( ( V e. Fin /\ N e. NN0 ) -> ( # ` { w e. Word V | ( # ` w ) = N } ) = ( ( # ` V ) ^ N ) ) |