Metamath Proof Explorer


Theorem fzofi

Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzofi
|- ( M ..^ N ) e. Fin

Proof

Step Hyp Ref Expression
1 fzoval
 |-  ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) )
2 1 adantl
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) )
3 fzfi
 |-  ( M ... ( N - 1 ) ) e. Fin
4 2 3 eqeltrdi
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) e. Fin )
5 fzof
 |-  ..^ : ( ZZ X. ZZ ) --> ~P ZZ
6 5 fdmi
 |-  dom ..^ = ( ZZ X. ZZ )
7 6 ndmov
 |-  ( -. ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = (/) )
8 0fin
 |-  (/) e. Fin
9 7 8 eqeltrdi
 |-  ( -. ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) e. Fin )
10 4 9 pm2.61i
 |-  ( M ..^ N ) e. Fin