Metamath Proof Explorer


Theorem wrdnfi

Description: If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018) Remove unnecessary antecedent. (Revised by JJ, 18-Nov-2022)

Ref Expression
Assertion wrdnfi VFinwWordV|w=NFin

Proof

Step Hyp Ref Expression
1 hashwrdn VFinN0wWordV|w=N=VN
2 hashcl VFinV0
3 nn0expcl V0N0VN0
4 2 3 sylan VFinN0VN0
5 1 4 eqeltrd VFinN0wWordV|w=N0
6 5 ex VFinN0wWordV|w=N0
7 lencl wWordVw0
8 eleq1 w=Nw0N0
9 7 8 syl5ibcom wWordVw=NN0
10 9 con3rr3 ¬N0wWordV¬w=N
11 10 ralrimiv ¬N0wWordV¬w=N
12 rabeq0 wWordV|w=N=wWordV¬w=N
13 11 12 sylibr ¬N0wWordV|w=N=
14 13 fveq2d ¬N0wWordV|w=N=
15 hash0 =0
16 14 15 eqtrdi ¬N0wWordV|w=N=0
17 0nn0 00
18 16 17 eqeltrdi ¬N0wWordV|w=N0
19 6 18 pm2.61d1 VFinwWordV|w=N0
20 wrdexg VFinWordVV
21 rabexg WordVVwWordV|w=NV
22 hashclb wWordV|w=NVwWordV|w=NFinwWordV|w=N0
23 20 21 22 3syl VFinwWordV|w=NFinwWordV|w=N0
24 19 23 mpbird VFinwWordV|w=NFin