Metamath Proof Explorer


Theorem wrdsymb0

Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018) (Proof shortened by AV, 2-May-2020)

Ref Expression
Assertion wrdsymb0 WWordVII<0WIWI=

Proof

Step Hyp Ref Expression
1 wrddm WWordVdomW=0..^W
2 lencl WWordVW0
3 2 nn0zd WWordVW
4 simpr WII
5 0zd WI0
6 simpl WIW
7 nelfzo I0WI0..^WI<0WI
8 4 5 6 7 syl3anc WII0..^WI<0WI
9 8 biimpar WII<0WII0..^W
10 df-nel I0..^W¬I0..^W
11 9 10 sylib WII<0WI¬I0..^W
12 eleq2 domW=0..^WIdomWI0..^W
13 12 notbid domW=0..^W¬IdomW¬I0..^W
14 11 13 imbitrrid domW=0..^WWII<0WI¬IdomW
15 14 exp4c domW=0..^WWII<0WI¬IdomW
16 1 3 15 sylc WWordVII<0WI¬IdomW
17 16 imp WWordVII<0WI¬IdomW
18 ndmfv ¬IdomWWI=
19 17 18 syl6 WWordVII<0WIWI=