Metamath Proof Explorer


Theorem nelfzo

Description: An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020)

Ref Expression
Assertion nelfzo KMNKM..^NK<MNK

Proof

Step Hyp Ref Expression
1 df-nel KM..^N¬KM..^N
2 ianor ¬MKK<N¬MK¬K<N
3 2 a1i KMN¬MKK<N¬MK¬K<N
4 elfzo KMNKM..^NMKK<N
5 4 notbid KMN¬KM..^N¬MKK<N
6 zre KK
7 zre MM
8 6 7 anim12i KMKM
9 8 3adant3 KMNKM
10 ltnle KMK<M¬MK
11 9 10 syl KMNK<M¬MK
12 zre NN
13 6 12 anim12ci KNNK
14 13 3adant2 KMNNK
15 lenlt NKNK¬K<N
16 14 15 syl KMNNK¬K<N
17 11 16 orbi12d KMNK<MNK¬MK¬K<N
18 3 5 17 3bitr4d KMN¬KM..^NK<MNK
19 1 18 bitrid KMNKM..^NK<MNK