Metamath Proof Explorer


Theorem hashclb

Description: Reverse closure of the # function. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Assertion hashclb AVAFinA0

Proof

Step Hyp Ref Expression
1 hashcl AFinA0
2 nn0re A0A
3 pnfnre +∞
4 3 neli ¬+∞
5 hashinf AV¬AFinA=+∞
6 5 eleq1d AV¬AFinA+∞
7 4 6 mtbiri AV¬AFin¬A
8 7 ex AV¬AFin¬A
9 8 con4d AVAAFin
10 2 9 syl5 AVA0AFin
11 1 10 impbid2 AVAFinA0