| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 2 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 3 | 2 | eqcomi |  |-  (/) = ( 0 ..^ 0 ) | 
						
							| 4 | 3 | naryfvalel |  |-  ( ( 0 e. NN0 /\ X e. V ) -> ( F e. ( 0 -aryF X ) <-> F : ( X ^m (/) ) --> X ) ) | 
						
							| 5 | 1 4 | mpan |  |-  ( X e. V -> ( F e. ( 0 -aryF X ) <-> F : ( X ^m (/) ) --> X ) ) | 
						
							| 6 |  | mapdm0 |  |-  ( X e. V -> ( X ^m (/) ) = { (/) } ) | 
						
							| 7 | 6 | feq2d |  |-  ( X e. V -> ( F : ( X ^m (/) ) --> X <-> F : { (/) } --> X ) ) | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 | 8 | fsn2 |  |-  ( F : { (/) } --> X <-> ( ( F ` (/) ) e. X /\ F = { <. (/) , ( F ` (/) ) >. } ) ) | 
						
							| 10 |  | opeq2 |  |-  ( x = ( F ` (/) ) -> <. (/) , x >. = <. (/) , ( F ` (/) ) >. ) | 
						
							| 11 | 10 | sneqd |  |-  ( x = ( F ` (/) ) -> { <. (/) , x >. } = { <. (/) , ( F ` (/) ) >. } ) | 
						
							| 12 | 11 | rspceeqv |  |-  ( ( ( F ` (/) ) e. X /\ F = { <. (/) , ( F ` (/) ) >. } ) -> E. x e. X F = { <. (/) , x >. } ) | 
						
							| 13 | 9 12 | sylbi |  |-  ( F : { (/) } --> X -> E. x e. X F = { <. (/) , x >. } ) | 
						
							| 14 | 8 | a1i |  |-  ( x e. X -> (/) e. _V ) | 
						
							| 15 |  | id |  |-  ( x e. X -> x e. X ) | 
						
							| 16 | 14 15 | fsnd |  |-  ( x e. X -> { <. (/) , x >. } : { (/) } --> X ) | 
						
							| 17 |  | feq1 |  |-  ( F = { <. (/) , x >. } -> ( F : { (/) } --> X <-> { <. (/) , x >. } : { (/) } --> X ) ) | 
						
							| 18 | 16 17 | syl5ibrcom |  |-  ( x e. X -> ( F = { <. (/) , x >. } -> F : { (/) } --> X ) ) | 
						
							| 19 | 18 | rexlimiv |  |-  ( E. x e. X F = { <. (/) , x >. } -> F : { (/) } --> X ) | 
						
							| 20 | 13 19 | impbii |  |-  ( F : { (/) } --> X <-> E. x e. X F = { <. (/) , x >. } ) | 
						
							| 21 | 20 | a1i |  |-  ( X e. V -> ( F : { (/) } --> X <-> E. x e. X F = { <. (/) , x >. } ) ) | 
						
							| 22 | 5 7 21 | 3bitrd |  |-  ( X e. V -> ( F e. ( 0 -aryF X ) <-> E. x e. X F = { <. (/) , x >. } ) ) |