Metamath Proof Explorer


Theorem 0aryfvalel

Description: A nullary (endo)function on a set X is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: ( F(/) ) = C with C e. X , see also 0aryfvalelfv . Instead of ( F(/) ) , nullary functions are usually written as F ( ) in literature. (Contributed by AV, 15-May-2024)

Ref Expression
Assertion 0aryfvalel
|- ( X e. V -> ( F e. ( 0 -aryF X ) <-> E. x e. X F = { <. (/) , x >. } ) )

Proof

Step Hyp Ref Expression
1 0nn0
 |-  0 e. NN0
2 fzo0
 |-  ( 0 ..^ 0 ) = (/)
3 2 eqcomi
 |-  (/) = ( 0 ..^ 0 )
4 3 naryfvalel
 |-  ( ( 0 e. NN0 /\ X e. V ) -> ( F e. ( 0 -aryF X ) <-> F : ( X ^m (/) ) --> X ) )
5 1 4 mpan
 |-  ( X e. V -> ( F e. ( 0 -aryF X ) <-> F : ( X ^m (/) ) --> X ) )
6 mapdm0
 |-  ( X e. V -> ( X ^m (/) ) = { (/) } )
7 6 feq2d
 |-  ( X e. V -> ( F : ( X ^m (/) ) --> X <-> F : { (/) } --> X ) )
8 0ex
 |-  (/) e. _V
9 8 fsn2
 |-  ( F : { (/) } --> X <-> ( ( F ` (/) ) e. X /\ F = { <. (/) , ( F ` (/) ) >. } ) )
10 opeq2
 |-  ( x = ( F ` (/) ) -> <. (/) , x >. = <. (/) , ( F ` (/) ) >. )
11 10 sneqd
 |-  ( x = ( F ` (/) ) -> { <. (/) , x >. } = { <. (/) , ( F ` (/) ) >. } )
12 11 rspceeqv
 |-  ( ( ( F ` (/) ) e. X /\ F = { <. (/) , ( F ` (/) ) >. } ) -> E. x e. X F = { <. (/) , x >. } )
13 9 12 sylbi
 |-  ( F : { (/) } --> X -> E. x e. X F = { <. (/) , x >. } )
14 8 a1i
 |-  ( x e. X -> (/) e. _V )
15 id
 |-  ( x e. X -> x e. X )
16 14 15 fsnd
 |-  ( x e. X -> { <. (/) , x >. } : { (/) } --> X )
17 feq1
 |-  ( F = { <. (/) , x >. } -> ( F : { (/) } --> X <-> { <. (/) , x >. } : { (/) } --> X ) )
18 16 17 syl5ibrcom
 |-  ( x e. X -> ( F = { <. (/) , x >. } -> F : { (/) } --> X ) )
19 18 rexlimiv
 |-  ( E. x e. X F = { <. (/) , x >. } -> F : { (/) } --> X )
20 13 19 impbii
 |-  ( F : { (/) } --> X <-> E. x e. X F = { <. (/) , x >. } )
21 20 a1i
 |-  ( X e. V -> ( F : { (/) } --> X <-> E. x e. X F = { <. (/) , x >. } ) )
22 5 7 21 3bitrd
 |-  ( X e. V -> ( F e. ( 0 -aryF X ) <-> E. x e. X F = { <. (/) , x >. } ) )