Step |
Hyp |
Ref |
Expression |
1 |
|
0nn0 |
|- 0 e. NN0 |
2 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
3 |
2
|
eqcomi |
|- (/) = ( 0 ..^ 0 ) |
4 |
3
|
naryfvalel |
|- ( ( 0 e. NN0 /\ X e. V ) -> ( F e. ( 0 -aryF X ) <-> F : ( X ^m (/) ) --> X ) ) |
5 |
1 4
|
mpan |
|- ( X e. V -> ( F e. ( 0 -aryF X ) <-> F : ( X ^m (/) ) --> X ) ) |
6 |
|
mapdm0 |
|- ( X e. V -> ( X ^m (/) ) = { (/) } ) |
7 |
6
|
feq2d |
|- ( X e. V -> ( F : ( X ^m (/) ) --> X <-> F : { (/) } --> X ) ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
8
|
fsn2 |
|- ( F : { (/) } --> X <-> ( ( F ` (/) ) e. X /\ F = { <. (/) , ( F ` (/) ) >. } ) ) |
10 |
|
opeq2 |
|- ( x = ( F ` (/) ) -> <. (/) , x >. = <. (/) , ( F ` (/) ) >. ) |
11 |
10
|
sneqd |
|- ( x = ( F ` (/) ) -> { <. (/) , x >. } = { <. (/) , ( F ` (/) ) >. } ) |
12 |
11
|
rspceeqv |
|- ( ( ( F ` (/) ) e. X /\ F = { <. (/) , ( F ` (/) ) >. } ) -> E. x e. X F = { <. (/) , x >. } ) |
13 |
9 12
|
sylbi |
|- ( F : { (/) } --> X -> E. x e. X F = { <. (/) , x >. } ) |
14 |
8
|
a1i |
|- ( x e. X -> (/) e. _V ) |
15 |
|
id |
|- ( x e. X -> x e. X ) |
16 |
14 15
|
fsnd |
|- ( x e. X -> { <. (/) , x >. } : { (/) } --> X ) |
17 |
|
feq1 |
|- ( F = { <. (/) , x >. } -> ( F : { (/) } --> X <-> { <. (/) , x >. } : { (/) } --> X ) ) |
18 |
16 17
|
syl5ibrcom |
|- ( x e. X -> ( F = { <. (/) , x >. } -> F : { (/) } --> X ) ) |
19 |
18
|
rexlimiv |
|- ( E. x e. X F = { <. (/) , x >. } -> F : { (/) } --> X ) |
20 |
13 19
|
impbii |
|- ( F : { (/) } --> X <-> E. x e. X F = { <. (/) , x >. } ) |
21 |
20
|
a1i |
|- ( X e. V -> ( F : { (/) } --> X <-> E. x e. X F = { <. (/) , x >. } ) ) |
22 |
5 7 21
|
3bitrd |
|- ( X e. V -> ( F e. ( 0 -aryF X ) <-> E. x e. X F = { <. (/) , x >. } ) ) |