| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( 0 ..^ 0 ) = ( 0 ..^ 0 ) | 
						
							| 2 | 1 | naryrcl |  |-  ( F e. ( 0 -aryF X ) -> ( 0 e. NN0 /\ X e. _V ) ) | 
						
							| 3 |  | 0aryfvalel |  |-  ( X e. _V -> ( F e. ( 0 -aryF X ) <-> E. x e. X F = { <. (/) , x >. } ) ) | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 |  | fvsng |  |-  ( ( (/) e. _V /\ x e. X ) -> ( { <. (/) , x >. } ` (/) ) = x ) | 
						
							| 6 | 4 5 | mpan |  |-  ( x e. X -> ( { <. (/) , x >. } ` (/) ) = x ) | 
						
							| 7 |  | fveq1 |  |-  ( F = { <. (/) , x >. } -> ( F ` (/) ) = ( { <. (/) , x >. } ` (/) ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( F = { <. (/) , x >. } -> ( ( F ` (/) ) = x <-> ( { <. (/) , x >. } ` (/) ) = x ) ) | 
						
							| 9 | 6 8 | syl5ibrcom |  |-  ( x e. X -> ( F = { <. (/) , x >. } -> ( F ` (/) ) = x ) ) | 
						
							| 10 | 9 | reximia |  |-  ( E. x e. X F = { <. (/) , x >. } -> E. x e. X ( F ` (/) ) = x ) | 
						
							| 11 | 3 10 | biimtrdi |  |-  ( X e. _V -> ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( 0 e. NN0 /\ X e. _V ) -> ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) ) | 
						
							| 13 | 2 12 | mpcom |  |-  ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) |