| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 0 ..^ 0 )  =  ( 0 ..^ 0 ) | 
						
							| 2 | 1 | naryrcl | ⊢ ( 𝐹  ∈  ( 0 -aryF  𝑋 )  →  ( 0  ∈  ℕ0  ∧  𝑋  ∈  V ) ) | 
						
							| 3 |  | 0aryfvalel | ⊢ ( 𝑋  ∈  V  →  ( 𝐹  ∈  ( 0 -aryF  𝑋 )  ↔  ∃ 𝑥  ∈  𝑋 𝐹  =  { 〈 ∅ ,  𝑥 〉 } ) ) | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 |  | fvsng | ⊢ ( ( ∅  ∈  V  ∧  𝑥  ∈  𝑋 )  →  ( { 〈 ∅ ,  𝑥 〉 } ‘ ∅ )  =  𝑥 ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝑥  ∈  𝑋  →  ( { 〈 ∅ ,  𝑥 〉 } ‘ ∅ )  =  𝑥 ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝐹  =  { 〈 ∅ ,  𝑥 〉 }  →  ( 𝐹 ‘ ∅ )  =  ( { 〈 ∅ ,  𝑥 〉 } ‘ ∅ ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝐹  =  { 〈 ∅ ,  𝑥 〉 }  →  ( ( 𝐹 ‘ ∅ )  =  𝑥  ↔  ( { 〈 ∅ ,  𝑥 〉 } ‘ ∅ )  =  𝑥 ) ) | 
						
							| 9 | 6 8 | syl5ibrcom | ⊢ ( 𝑥  ∈  𝑋  →  ( 𝐹  =  { 〈 ∅ ,  𝑥 〉 }  →  ( 𝐹 ‘ ∅ )  =  𝑥 ) ) | 
						
							| 10 | 9 | reximia | ⊢ ( ∃ 𝑥  ∈  𝑋 𝐹  =  { 〈 ∅ ,  𝑥 〉 }  →  ∃ 𝑥  ∈  𝑋 ( 𝐹 ‘ ∅ )  =  𝑥 ) | 
						
							| 11 | 3 10 | biimtrdi | ⊢ ( 𝑋  ∈  V  →  ( 𝐹  ∈  ( 0 -aryF  𝑋 )  →  ∃ 𝑥  ∈  𝑋 ( 𝐹 ‘ ∅ )  =  𝑥 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 0  ∈  ℕ0  ∧  𝑋  ∈  V )  →  ( 𝐹  ∈  ( 0 -aryF  𝑋 )  →  ∃ 𝑥  ∈  𝑋 ( 𝐹 ‘ ∅ )  =  𝑥 ) ) | 
						
							| 13 | 2 12 | mpcom | ⊢ ( 𝐹  ∈  ( 0 -aryF  𝑋 )  →  ∃ 𝑥  ∈  𝑋 ( 𝐹 ‘ ∅ )  =  𝑥 ) |