Metamath Proof Explorer


Theorem 0aryfvalelfv

Description: The value of a nullary (endo)function on a set X . (Contributed by AV, 19-May-2024)

Ref Expression
Assertion 0aryfvalelfv F 0 -aryF X x X F = x

Proof

Step Hyp Ref Expression
1 eqid 0 ..^ 0 = 0 ..^ 0
2 1 naryrcl F 0 -aryF X 0 0 X V
3 0aryfvalel X V F 0 -aryF X x X F = x
4 0ex V
5 fvsng V x X x = x
6 4 5 mpan x X x = x
7 fveq1 F = x F = x
8 7 eqeq1d F = x F = x x = x
9 6 8 syl5ibrcom x X F = x F = x
10 9 reximia x X F = x x X F = x
11 3 10 biimtrdi X V F 0 -aryF X x X F = x
12 11 adantl 0 0 X V F 0 -aryF X x X F = x
13 2 12 mpcom F 0 -aryF X x X F = x