Metamath Proof Explorer


Theorem 0aryfvalelfv

Description: The value of a nullary (endo)function on a set X . (Contributed by AV, 19-May-2024)

Ref Expression
Assertion 0aryfvalelfv Could not format assertion : No typesetting found for |- ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid 0..^0=0..^0
2 1 naryrcl Could not format ( F e. ( 0 -aryF X ) -> ( 0 e. NN0 /\ X e. _V ) ) : No typesetting found for |- ( F e. ( 0 -aryF X ) -> ( 0 e. NN0 /\ X e. _V ) ) with typecode |-
3 0aryfvalel Could not format ( X e. _V -> ( F e. ( 0 -aryF X ) <-> E. x e. X F = { <. (/) , x >. } ) ) : No typesetting found for |- ( X e. _V -> ( F e. ( 0 -aryF X ) <-> E. x e. X F = { <. (/) , x >. } ) ) with typecode |-
4 0ex V
5 fvsng VxXx=x
6 4 5 mpan xXx=x
7 fveq1 F=xF=x
8 7 eqeq1d F=xF=xx=x
9 6 8 syl5ibrcom xXF=xF=x
10 9 reximia xXF=xxXF=x
11 3 10 syl6bi Could not format ( X e. _V -> ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) ) : No typesetting found for |- ( X e. _V -> ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) ) with typecode |-
12 11 adantl Could not format ( ( 0 e. NN0 /\ X e. _V ) -> ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) ) : No typesetting found for |- ( ( 0 e. NN0 /\ X e. _V ) -> ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) ) with typecode |-
13 2 12 mpcom Could not format ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) : No typesetting found for |- ( F e. ( 0 -aryF X ) -> E. x e. X ( F ` (/) ) = x ) with typecode |-