Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
N-ary functions
0aryfvalelfv
Next ⟩
1aryfvalel
Metamath Proof Explorer
Ascii
Unicode
Theorem
0aryfvalelfv
Description:
The value of a nullary (endo)function on a set
X
.
(Contributed by
AV
, 19-May-2024)
Ref
Expression
Assertion
0aryfvalelfv
⊢
F
∈
0
-aryF
X
→
∃
x
∈
X
F
⁡
∅
=
x
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
0
..^
0
=
0
..^
0
2
1
naryrcl
⊢
F
∈
0
-aryF
X
→
0
∈
ℕ
0
∧
X
∈
V
3
0aryfvalel
⊢
X
∈
V
→
F
∈
0
-aryF
X
↔
∃
x
∈
X
F
=
∅
x
4
0ex
⊢
∅
∈
V
5
fvsng
⊢
∅
∈
V
∧
x
∈
X
→
∅
x
⁡
∅
=
x
6
4
5
mpan
⊢
x
∈
X
→
∅
x
⁡
∅
=
x
7
fveq1
⊢
F
=
∅
x
→
F
⁡
∅
=
∅
x
⁡
∅
8
7
eqeq1d
⊢
F
=
∅
x
→
F
⁡
∅
=
x
↔
∅
x
⁡
∅
=
x
9
6
8
syl5ibrcom
⊢
x
∈
X
→
F
=
∅
x
→
F
⁡
∅
=
x
10
9
reximia
⊢
∃
x
∈
X
F
=
∅
x
→
∃
x
∈
X
F
⁡
∅
=
x
11
3
10
biimtrdi
⊢
X
∈
V
→
F
∈
0
-aryF
X
→
∃
x
∈
X
F
⁡
∅
=
x
12
11
adantl
⊢
0
∈
ℕ
0
∧
X
∈
V
→
F
∈
0
-aryF
X
→
∃
x
∈
X
F
⁡
∅
=
x
13
2
12
mpcom
⊢
F
∈
0
-aryF
X
→
∃
x
∈
X
F
⁡
∅
=
x