Metamath Proof Explorer


Theorem 1aryfvalel

Description: A unary (endo)function on a set X . (Contributed by AV, 15-May-2024)

Ref Expression
Assertion 1aryfvalel X V F 1 -aryF X F : X 0 X

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 fzo01 0 ..^ 1 = 0
3 2 eqcomi 0 = 0 ..^ 1
4 3 naryfvalel 1 0 X V F 1 -aryF X F : X 0 X
5 1 4 mpan X V F 1 -aryF X F : X 0 X