Metamath Proof Explorer


Theorem naryfvalel

Description: An n-ary (endo)function on a set X . (Contributed by AV, 14-May-2024)

Ref Expression
Hypothesis naryfval.i I = 0 ..^ N
Assertion naryfvalel N 0 X V F N -aryF X F : X I X

Proof

Step Hyp Ref Expression
1 naryfval.i I = 0 ..^ N
2 1 naryfval N 0 N -aryF X = X X I
3 2 eleq2d N 0 F N -aryF X F X X I
4 ovex X I V
5 elmapg X V X I V F X X I F : X I X
6 4 5 mpan2 X V F X X I F : X I X
7 3 6 sylan9bb N 0 X V F N -aryF X F : X I X