Metamath Proof Explorer


Theorem naryfval

Description: The set of the n-ary (endo)functions on a class X . (Contributed by AV, 13-May-2024)

Ref Expression
Hypothesis naryfval.i I = 0 ..^ N
Assertion naryfval N 0 N -aryF X = X X I

Proof

Step Hyp Ref Expression
1 naryfval.i I = 0 ..^ N
2 simpr n = N x = X x = X
3 oveq2 n = N 0 ..^ n = 0 ..^ N
4 3 1 eqtr4di n = N 0 ..^ n = I
5 4 adantr n = N x = X 0 ..^ n = I
6 2 5 oveq12d n = N x = X x 0 ..^ n = X I
7 2 6 oveq12d n = N x = X x x 0 ..^ n = X X I
8 df-naryf -aryF = n 0 , x V x x 0 ..^ n
9 ovex X X I V
10 7 8 9 ovmpoa N 0 X V N -aryF X = X X I
11 10 ex N 0 X V N -aryF X = X X I
12 simpr N 0 X V X V
13 df-naryf -aryF = x 0 , n V n n 0 ..^ x
14 13 mpondm0 ¬ N 0 X V N -aryF X =
15 12 14 nsyl5 ¬ X V N -aryF X =
16 simpl X V X I V X V
17 df-map 𝑚 = x V , y V f | f : y x
18 17 mpondm0 ¬ X V X I V X X I =
19 16 18 nsyl5 ¬ X V X X I =
20 15 19 eqtr4d ¬ X V N -aryF X = X X I
21 11 20 pm2.61d1 N 0 N -aryF X = X X I