Metamath Proof Explorer


Theorem naryfvalixp

Description: The set of the n-ary (endo)functions on a class X expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024)

Ref Expression
Hypothesis naryfval.i I = 0 ..^ N
Assertion naryfvalixp N 0 N -aryF X = X x I X

Proof

Step Hyp Ref Expression
1 naryfval.i I = 0 ..^ N
2 1 naryfval N 0 N -aryF X = X X I
3 2 adantr N 0 X V N -aryF X = X X I
4 1 ovexi I V
5 4 a1i N 0 I V
6 ixpconstg I V X V x I X = X I
7 5 6 sylan N 0 X V x I X = X I
8 7 oveq2d N 0 X V X x I X = X X I
9 3 8 eqtr4d N 0 X V N -aryF X = X x I X
10 9 ex N 0 X V N -aryF X = X x I X
11 simpr N 0 X V X V
12 df-naryf -aryF = x 0 , n V n n 0 ..^ x
13 12 mpondm0 ¬ N 0 X V N -aryF X =
14 11 13 nsyl5 ¬ X V N -aryF X =
15 reldmmap Rel dom 𝑚
16 15 ovprc1 ¬ X V X x I X =
17 14 16 eqtr4d ¬ X V N -aryF X = X x I X
18 10 17 pm2.61d1 N 0 N -aryF X = X x I X