Step |
Hyp |
Ref |
Expression |
1 |
|
naryfval.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
2 |
1
|
naryfval |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) |
4 |
1
|
ovexi |
⊢ 𝐼 ∈ V |
5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 𝐼 ∈ V ) |
6 |
|
ixpconstg |
⊢ ( ( 𝐼 ∈ V ∧ 𝑋 ∈ V ) → X 𝑥 ∈ 𝐼 𝑋 = ( 𝑋 ↑m 𝐼 ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → X 𝑥 ∈ 𝐼 𝑋 = ( 𝑋 ↑m 𝐼 ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝑋 ↑m X 𝑥 ∈ 𝐼 𝑋 ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) |
9 |
3 8
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m X 𝑥 ∈ 𝐼 𝑋 ) ) |
10 |
9
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m X 𝑥 ∈ 𝐼 𝑋 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → 𝑋 ∈ V ) |
12 |
|
df-naryf |
⊢ -aryF = ( 𝑥 ∈ ℕ0 , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑛 ↑m ( 0 ..^ 𝑥 ) ) ) ) |
13 |
12
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ∅ ) |
14 |
11 13
|
nsyl5 |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ∅ ) |
15 |
|
reldmmap |
⊢ Rel dom ↑m |
16 |
15
|
ovprc1 |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 ↑m X 𝑥 ∈ 𝐼 𝑋 ) = ∅ ) |
17 |
14 16
|
eqtr4d |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m X 𝑥 ∈ 𝐼 𝑋 ) ) |
18 |
10 17
|
pm2.61d1 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m X 𝑥 ∈ 𝐼 𝑋 ) ) |