| Step | Hyp | Ref | Expression | 
						
							| 1 |  | naryfval.i | ⊢ 𝐼  =  ( 0 ..^ 𝑁 ) | 
						
							| 2 | 1 | naryfval | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) | 
						
							| 4 | 1 | ovexi | ⊢ 𝐼  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  𝐼  ∈  V ) | 
						
							| 6 |  | ixpconstg | ⊢ ( ( 𝐼  ∈  V  ∧  𝑋  ∈  V )  →  X 𝑥  ∈  𝐼 𝑋  =  ( 𝑋  ↑m  𝐼 ) ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  X 𝑥  ∈  𝐼 𝑋  =  ( 𝑋  ↑m  𝐼 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  ( 𝑋  ↑m  X 𝑥  ∈  𝐼 𝑋 )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) | 
						
							| 9 | 3 8 | eqtr4d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  X 𝑥  ∈  𝐼 𝑋 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑋  ∈  V  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  X 𝑥  ∈  𝐼 𝑋 ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  𝑋  ∈  V ) | 
						
							| 12 |  | df-naryf | ⊢ -aryF   =  ( 𝑥  ∈  ℕ0 ,  𝑛  ∈  V  ↦  ( 𝑛  ↑m  ( 𝑛  ↑m  ( 0 ..^ 𝑥 ) ) ) ) | 
						
							| 13 | 12 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  ( 𝑁 -aryF  𝑋 )  =  ∅ ) | 
						
							| 14 | 11 13 | nsyl5 | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑁 -aryF  𝑋 )  =  ∅ ) | 
						
							| 15 |  | reldmmap | ⊢ Rel  dom   ↑m | 
						
							| 16 | 15 | ovprc1 | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑋  ↑m  X 𝑥  ∈  𝐼 𝑋 )  =  ∅ ) | 
						
							| 17 | 14 16 | eqtr4d | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  X 𝑥  ∈  𝐼 𝑋 ) ) | 
						
							| 18 | 10 17 | pm2.61d1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  X 𝑥  ∈  𝐼 𝑋 ) ) |