Metamath Proof Explorer


Theorem naryfvalixp

Description: The set of the n-ary (endo)functions on a class X expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024)

Ref Expression
Hypothesis naryfval.i 𝐼 = ( 0 ..^ 𝑁 )
Assertion naryfvalixp ( 𝑁 ∈ ℕ0 → ( 𝑁 -aryF 𝑋 ) = ( 𝑋m X 𝑥𝐼 𝑋 ) )

Proof

Step Hyp Ref Expression
1 naryfval.i 𝐼 = ( 0 ..^ 𝑁 )
2 1 naryfval ( 𝑁 ∈ ℕ0 → ( 𝑁 -aryF 𝑋 ) = ( 𝑋m ( 𝑋m 𝐼 ) ) )
3 2 adantr ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ( 𝑋m ( 𝑋m 𝐼 ) ) )
4 1 ovexi 𝐼 ∈ V
5 4 a1i ( 𝑁 ∈ ℕ0𝐼 ∈ V )
6 ixpconstg ( ( 𝐼 ∈ V ∧ 𝑋 ∈ V ) → X 𝑥𝐼 𝑋 = ( 𝑋m 𝐼 ) )
7 5 6 sylan ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → X 𝑥𝐼 𝑋 = ( 𝑋m 𝐼 ) )
8 7 oveq2d ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → ( 𝑋m X 𝑥𝐼 𝑋 ) = ( 𝑋m ( 𝑋m 𝐼 ) ) )
9 3 8 eqtr4d ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ( 𝑋m X 𝑥𝐼 𝑋 ) )
10 9 ex ( 𝑁 ∈ ℕ0 → ( 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ( 𝑋m X 𝑥𝐼 𝑋 ) ) )
11 simpr ( ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → 𝑋 ∈ V )
12 df-naryf -aryF = ( 𝑥 ∈ ℕ0 , 𝑛 ∈ V ↦ ( 𝑛m ( 𝑛m ( 0 ..^ 𝑥 ) ) ) )
13 12 mpondm0 ( ¬ ( 𝑁 ∈ ℕ0𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ∅ )
14 11 13 nsyl5 ( ¬ 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ∅ )
15 reldmmap Rel dom ↑m
16 15 ovprc1 ( ¬ 𝑋 ∈ V → ( 𝑋m X 𝑥𝐼 𝑋 ) = ∅ )
17 14 16 eqtr4d ( ¬ 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ( 𝑋m X 𝑥𝐼 𝑋 ) )
18 10 17 pm2.61d1 ( 𝑁 ∈ ℕ0 → ( 𝑁 -aryF 𝑋 ) = ( 𝑋m X 𝑥𝐼 𝑋 ) )