Metamath Proof Explorer


Theorem naryfvalixp

Description: The set of the n-ary (endo)functions on a class X expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024)

Ref Expression
Hypothesis naryfval.i
|- I = ( 0 ..^ N )
Assertion naryfvalixp
|- ( N e. NN0 -> ( N -aryF X ) = ( X ^m X_ x e. I X ) )

Proof

Step Hyp Ref Expression
1 naryfval.i
 |-  I = ( 0 ..^ N )
2 1 naryfval
 |-  ( N e. NN0 -> ( N -aryF X ) = ( X ^m ( X ^m I ) ) )
3 2 adantr
 |-  ( ( N e. NN0 /\ X e. _V ) -> ( N -aryF X ) = ( X ^m ( X ^m I ) ) )
4 1 ovexi
 |-  I e. _V
5 4 a1i
 |-  ( N e. NN0 -> I e. _V )
6 ixpconstg
 |-  ( ( I e. _V /\ X e. _V ) -> X_ x e. I X = ( X ^m I ) )
7 5 6 sylan
 |-  ( ( N e. NN0 /\ X e. _V ) -> X_ x e. I X = ( X ^m I ) )
8 7 oveq2d
 |-  ( ( N e. NN0 /\ X e. _V ) -> ( X ^m X_ x e. I X ) = ( X ^m ( X ^m I ) ) )
9 3 8 eqtr4d
 |-  ( ( N e. NN0 /\ X e. _V ) -> ( N -aryF X ) = ( X ^m X_ x e. I X ) )
10 9 ex
 |-  ( N e. NN0 -> ( X e. _V -> ( N -aryF X ) = ( X ^m X_ x e. I X ) ) )
11 simpr
 |-  ( ( N e. NN0 /\ X e. _V ) -> X e. _V )
12 df-naryf
 |-  -aryF = ( x e. NN0 , n e. _V |-> ( n ^m ( n ^m ( 0 ..^ x ) ) ) )
13 12 mpondm0
 |-  ( -. ( N e. NN0 /\ X e. _V ) -> ( N -aryF X ) = (/) )
14 11 13 nsyl5
 |-  ( -. X e. _V -> ( N -aryF X ) = (/) )
15 reldmmap
 |-  Rel dom ^m
16 15 ovprc1
 |-  ( -. X e. _V -> ( X ^m X_ x e. I X ) = (/) )
17 14 16 eqtr4d
 |-  ( -. X e. _V -> ( N -aryF X ) = ( X ^m X_ x e. I X ) )
18 10 17 pm2.61d1
 |-  ( N e. NN0 -> ( N -aryF X ) = ( X ^m X_ x e. I X ) )