Description: Define the n-ary (endo)functions. (Contributed by AV, 11-May-2024) (Revised by TA and SN, 7-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-naryf | |- -aryF = ( n e. NN0 , x e. _V |-> ( x ^m ( x ^m ( 0 ..^ n ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnaryf | |- -aryF |
|
| 1 | vn | |- n |
|
| 2 | cn0 | |- NN0 |
|
| 3 | vx | |- x |
|
| 4 | cvv | |- _V |
|
| 5 | 3 | cv | |- x |
| 6 | cmap | |- ^m |
|
| 7 | cc0 | |- 0 |
|
| 8 | cfzo | |- ..^ |
|
| 9 | 1 | cv | |- n |
| 10 | 7 9 8 | co | |- ( 0 ..^ n ) |
| 11 | 5 10 6 | co | |- ( x ^m ( 0 ..^ n ) ) |
| 12 | 5 11 6 | co | |- ( x ^m ( x ^m ( 0 ..^ n ) ) ) |
| 13 | 1 3 2 4 12 | cmpo | |- ( n e. NN0 , x e. _V |-> ( x ^m ( x ^m ( 0 ..^ n ) ) ) ) |
| 14 | 0 13 | wceq | |- -aryF = ( n e. NN0 , x e. _V |-> ( x ^m ( x ^m ( 0 ..^ n ) ) ) ) |