Metamath Proof Explorer


Definition df-naryf

Description: Define the n-ary (endo)functions. (Contributed by AV, 11-May-2024) (Revised by TA and SN, 7-Jun-2024)

Ref Expression
Assertion df-naryf -aryF = ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥m ( 𝑥m ( 0 ..^ 𝑛 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnaryf -aryF
1 vn 𝑛
2 cn0 0
3 vx 𝑥
4 cvv V
5 3 cv 𝑥
6 cmap m
7 cc0 0
8 cfzo ..^
9 1 cv 𝑛
10 7 9 8 co ( 0 ..^ 𝑛 )
11 5 10 6 co ( 𝑥m ( 0 ..^ 𝑛 ) )
12 5 11 6 co ( 𝑥m ( 𝑥m ( 0 ..^ 𝑛 ) ) )
13 1 3 2 4 12 cmpo ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥m ( 𝑥m ( 0 ..^ 𝑛 ) ) ) )
14 0 13 wceq -aryF = ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥m ( 𝑥m ( 0 ..^ 𝑛 ) ) ) )