Description: Define the n-ary (endo)functions. (Contributed by AV, 11-May-2024) (Revised by TA and SN, 7-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-naryf | ⊢ -aryF = ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnaryf | ⊢ -aryF | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cn0 | ⊢ ℕ0 | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cvv | ⊢ V | |
| 5 | 3 | cv | ⊢ 𝑥 |
| 6 | cmap | ⊢ ↑m | |
| 7 | cc0 | ⊢ 0 | |
| 8 | cfzo | ⊢ ..^ | |
| 9 | 1 | cv | ⊢ 𝑛 |
| 10 | 7 9 8 | co | ⊢ ( 0 ..^ 𝑛 ) |
| 11 | 5 10 6 | co | ⊢ ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) |
| 12 | 5 11 6 | co | ⊢ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) |
| 13 | 1 3 2 4 12 | cmpo | ⊢ ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) ) |
| 14 | 0 13 | wceq | ⊢ -aryF = ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) ) |