Description: Define the n-ary (endo)functions. (Contributed by AV, 11-May-2024) (Revised by TA and SN, 7-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-naryf | ⊢ -aryF = ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnaryf | ⊢ -aryF | |
1 | vn | ⊢ 𝑛 | |
2 | cn0 | ⊢ ℕ0 | |
3 | vx | ⊢ 𝑥 | |
4 | cvv | ⊢ V | |
5 | 3 | cv | ⊢ 𝑥 |
6 | cmap | ⊢ ↑m | |
7 | cc0 | ⊢ 0 | |
8 | cfzo | ⊢ ..^ | |
9 | 1 | cv | ⊢ 𝑛 |
10 | 7 9 8 | co | ⊢ ( 0 ..^ 𝑛 ) |
11 | 5 10 6 | co | ⊢ ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) |
12 | 5 11 6 | co | ⊢ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) |
13 | 1 3 2 4 12 | cmpo | ⊢ ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) ) |
14 | 0 13 | wceq | ⊢ -aryF = ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) ) |