| Step | Hyp | Ref | Expression | 
						
							| 1 |  | naryfval.i | ⊢ 𝐼  =  ( 0 ..^ 𝑁 ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  𝑥  =  𝑋 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 0 ..^ 𝑛 )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑛  =  𝑁  →  ( 0 ..^ 𝑛 )  =  𝐼 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  ( 0 ..^ 𝑛 )  =  𝐼 ) | 
						
							| 6 | 2 5 | oveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  ( 𝑥  ↑m  ( 0 ..^ 𝑛 ) )  =  ( 𝑋  ↑m  𝐼 ) ) | 
						
							| 7 | 2 6 | oveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑥  =  𝑋 )  →  ( 𝑥  ↑m  ( 𝑥  ↑m  ( 0 ..^ 𝑛 ) ) )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) | 
						
							| 8 |  | df-naryf | ⊢ -aryF   =  ( 𝑛  ∈  ℕ0 ,  𝑥  ∈  V  ↦  ( 𝑥  ↑m  ( 𝑥  ↑m  ( 0 ..^ 𝑛 ) ) ) ) | 
						
							| 9 |  | ovex | ⊢ ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) )  ∈  V | 
						
							| 10 | 7 8 9 | ovmpoa | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑋  ∈  V  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  𝑋  ∈  V ) | 
						
							| 13 |  | df-naryf | ⊢ -aryF   =  ( 𝑥  ∈  ℕ0 ,  𝑛  ∈  V  ↦  ( 𝑛  ↑m  ( 𝑛  ↑m  ( 0 ..^ 𝑥 ) ) ) ) | 
						
							| 14 | 13 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝑋  ∈  V )  →  ( 𝑁 -aryF  𝑋 )  =  ∅ ) | 
						
							| 15 | 12 14 | nsyl5 | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑁 -aryF  𝑋 )  =  ∅ ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝑋  ∈  V  ∧  ( 𝑋  ↑m  𝐼 )  ∈  V )  →  𝑋  ∈  V ) | 
						
							| 17 |  | df-map | ⊢  ↑m   =  ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  { 𝑓  ∣  𝑓 : 𝑦 ⟶ 𝑥 } ) | 
						
							| 18 | 17 | mpondm0 | ⊢ ( ¬  ( 𝑋  ∈  V  ∧  ( 𝑋  ↑m  𝐼 )  ∈  V )  →  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) )  =  ∅ ) | 
						
							| 19 | 16 18 | nsyl5 | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) )  =  ∅ ) | 
						
							| 20 | 15 19 | eqtr4d | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) | 
						
							| 21 | 11 20 | pm2.61d1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 -aryF  𝑋 )  =  ( 𝑋  ↑m  ( 𝑋  ↑m  𝐼 ) ) ) |