Step |
Hyp |
Ref |
Expression |
1 |
|
naryfval.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
2 |
|
simpr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
3 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ..^ 𝑛 ) = ( 0 ..^ 𝑁 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑛 = 𝑁 → ( 0 ..^ 𝑛 ) = 𝐼 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 0 ..^ 𝑛 ) = 𝐼 ) |
6 |
2 5
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) = ( 𝑋 ↑m 𝐼 ) ) |
7 |
2 6
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) |
8 |
|
df-naryf |
⊢ -aryF = ( 𝑛 ∈ ℕ0 , 𝑥 ∈ V ↦ ( 𝑥 ↑m ( 𝑥 ↑m ( 0 ..^ 𝑛 ) ) ) ) |
9 |
|
ovex |
⊢ ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ∈ V |
10 |
7 8 9
|
ovmpoa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) |
11 |
10
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → 𝑋 ∈ V ) |
13 |
|
df-naryf |
⊢ -aryF = ( 𝑥 ∈ ℕ0 , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑛 ↑m ( 0 ..^ 𝑥 ) ) ) ) |
14 |
13
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V ) → ( 𝑁 -aryF 𝑋 ) = ∅ ) |
15 |
12 14
|
nsyl5 |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ∅ ) |
16 |
|
simpl |
⊢ ( ( 𝑋 ∈ V ∧ ( 𝑋 ↑m 𝐼 ) ∈ V ) → 𝑋 ∈ V ) |
17 |
|
df-map |
⊢ ↑m = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ) |
18 |
17
|
mpondm0 |
⊢ ( ¬ ( 𝑋 ∈ V ∧ ( 𝑋 ↑m 𝐼 ) ∈ V ) → ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) = ∅ ) |
19 |
16 18
|
nsyl5 |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) = ∅ ) |
20 |
15 19
|
eqtr4d |
⊢ ( ¬ 𝑋 ∈ V → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) |
21 |
11 20
|
pm2.61d1 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 -aryF 𝑋 ) = ( 𝑋 ↑m ( 𝑋 ↑m 𝐼 ) ) ) |