Metamath Proof Explorer


Theorem fv2arycl

Description: Closure of a binary (endo)function. (Contributed by AV, 20-May-2024)

Ref Expression
Assertion fv2arycl ( ( 𝐺 ∈ ( 2 -aryF 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐺 ‘ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) ∈ 𝑋 )

Proof

Step Hyp Ref Expression
1 eqid ( 0 ..^ 2 ) = ( 0 ..^ 2 )
2 1 naryrcl ( 𝐺 ∈ ( 2 -aryF 𝑋 ) → ( 2 ∈ ℕ0𝑋 ∈ V ) )
3 2aryfvalel ( 𝑋 ∈ V → ( 𝐺 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐺 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ) )
4 simp2 ( ( 𝑋 ∈ V ∧ 𝐺 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 𝐺 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 )
5 c0ex 0 ∈ V
6 1ex 1 ∈ V
7 0ne1 0 ≠ 1
8 5 6 7 3pm3.2i ( 0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1 )
9 8 a1i ( ( 𝑋 ∈ V ∧ 𝐺 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1 ) )
10 fprmappr ( ( 𝑋 ∈ V ∧ ( 0 ∈ V ∧ 1 ∈ V ∧ 0 ≠ 1 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∈ ( 𝑋m { 0 , 1 } ) )
11 9 10 syld3an2 ( ( 𝑋 ∈ V ∧ 𝐺 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ∈ ( 𝑋m { 0 , 1 } ) )
12 4 11 ffvelrnd ( ( 𝑋 ∈ V ∧ 𝐺 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐺 ‘ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) ∈ 𝑋 )
13 12 3exp ( 𝑋 ∈ V → ( 𝐺 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 → ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐺 ‘ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) ∈ 𝑋 ) ) )
14 3 13 sylbid ( 𝑋 ∈ V → ( 𝐺 ∈ ( 2 -aryF 𝑋 ) → ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐺 ‘ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) ∈ 𝑋 ) ) )
15 14 adantl ( ( 2 ∈ ℕ0𝑋 ∈ V ) → ( 𝐺 ∈ ( 2 -aryF 𝑋 ) → ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐺 ‘ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) ∈ 𝑋 ) ) )
16 2 15 mpcom ( 𝐺 ∈ ( 2 -aryF 𝑋 ) → ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐺 ‘ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) ∈ 𝑋 ) )
17 16 3impib ( ( 𝐺 ∈ ( 2 -aryF 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐺 ‘ { ⟨ 0 , 𝐴 ⟩ , ⟨ 1 , 𝐵 ⟩ } ) ∈ 𝑋 )