Metamath Proof Explorer


Theorem 2aryfvalel

Description: A binary (endo)function on a set X . (Contributed by AV, 20-May-2024)

Ref Expression
Assertion 2aryfvalel ( 𝑋𝑉 → ( 𝐹 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 fzo0to2pr ( 0 ..^ 2 ) = { 0 , 1 }
3 2 eqcomi { 0 , 1 } = ( 0 ..^ 2 )
4 3 naryfvalel ( ( 2 ∈ ℕ0𝑋𝑉 ) → ( 𝐹 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ) )
5 1 4 mpan ( 𝑋𝑉 → ( 𝐹 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ) )