Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
fzoval |
⊢ ( 2 ∈ ℤ → ( 0 ..^ 2 ) = ( 0 ... ( 2 − 1 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 0 ..^ 2 ) = ( 0 ... ( 2 − 1 ) ) |
4 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
5 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
6 |
4 5
|
eqtr4i |
⊢ ( 2 − 1 ) = ( 0 + 1 ) |
7 |
6
|
oveq2i |
⊢ ( 0 ... ( 2 − 1 ) ) = ( 0 ... ( 0 + 1 ) ) |
8 |
|
0z |
⊢ 0 ∈ ℤ |
9 |
|
fzpr |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
10 |
5
|
preq2i |
⊢ { 0 , ( 0 + 1 ) } = { 0 , 1 } |
11 |
9 10
|
eqtrdi |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } ) |
12 |
8 11
|
ax-mp |
⊢ ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } |
13 |
3 7 12
|
3eqtri |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |