Description: A binary (endo)function on a set X . (Contributed by AV, 20-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 2aryfvalel | |- ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 | |- 2 e. NN0 |
|
2 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
3 | 2 | eqcomi | |- { 0 , 1 } = ( 0 ..^ 2 ) |
4 | 3 | naryfvalel | |- ( ( 2 e. NN0 /\ X e. V ) -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) |
5 | 1 4 | mpan | |- ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) |