Description: A binary (endo)function on a set X . (Contributed by AV, 20-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2aryfvalel | |- ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2nn0 | |- 2 e. NN0 | |
| 2 | fzo0to2pr |  |-  ( 0 ..^ 2 ) = { 0 , 1 } | |
| 3 | 2 | eqcomi |  |-  { 0 , 1 } = ( 0 ..^ 2 ) | 
| 4 | 3 | naryfvalel |  |-  ( ( 2 e. NN0 /\ X e. V ) -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) | 
| 5 | 1 4 | mpan |  |-  ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) |