Metamath Proof Explorer


Theorem 2aryfvalel

Description: A binary (endo)function on a set X . (Contributed by AV, 20-May-2024)

Ref Expression
Assertion 2aryfvalel X V F 2 -aryF X F : X 0 1 X

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 fzo0to2pr 0 ..^ 2 = 0 1
3 2 eqcomi 0 1 = 0 ..^ 2
4 3 naryfvalel 2 0 X V F 2 -aryF X F : X 0 1 X
5 1 4 mpan X V F 2 -aryF X F : X 0 1 X