Step |
Hyp |
Ref |
Expression |
1 |
|
2arympt.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) ↦ ( ( 𝑥 ‘ 0 ) 𝑂 ( 𝑥 ‘ 1 ) ) ) |
2 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) ) → 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
3 |
|
elmapi |
⊢ ( 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) → 𝑥 : { 0 , 1 } ⟶ 𝑋 ) |
4 |
|
c0ex |
⊢ 0 ∈ V |
5 |
4
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
6 |
5
|
a1i |
⊢ ( 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) → 0 ∈ { 0 , 1 } ) |
7 |
3 6
|
ffvelrnd |
⊢ ( 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) → ( 𝑥 ‘ 0 ) ∈ 𝑋 ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) ) → ( 𝑥 ‘ 0 ) ∈ 𝑋 ) |
9 |
|
1ex |
⊢ 1 ∈ V |
10 |
9
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
11 |
10
|
a1i |
⊢ ( 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) → 1 ∈ { 0 , 1 } ) |
12 |
3 11
|
ffvelrnd |
⊢ ( 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) → ( 𝑥 ‘ 1 ) ∈ 𝑋 ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) ) → ( 𝑥 ‘ 1 ) ∈ 𝑋 ) |
14 |
2 8 13
|
fovrnd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋 ↑m { 0 , 1 } ) ) → ( ( 𝑥 ‘ 0 ) 𝑂 ( 𝑥 ‘ 1 ) ) ∈ 𝑋 ) |
15 |
14 1
|
fmptd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → 𝐹 : ( 𝑋 ↑m { 0 , 1 } ) ⟶ 𝑋 ) |
16 |
|
2aryfvalel |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐹 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋 ↑m { 0 , 1 } ) ⟶ 𝑋 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝐹 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋 ↑m { 0 , 1 } ) ⟶ 𝑋 ) ) |
18 |
15 17
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → 𝐹 ∈ ( 2 -aryF 𝑋 ) ) |