Metamath Proof Explorer


Theorem 2arympt

Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024)

Ref Expression
Hypothesis 2arympt.f 𝐹 = ( 𝑥 ∈ ( 𝑋m { 0 , 1 } ) ↦ ( ( 𝑥 ‘ 0 ) 𝑂 ( 𝑥 ‘ 1 ) ) )
Assertion 2arympt ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → 𝐹 ∈ ( 2 -aryF 𝑋 ) )

Proof

Step Hyp Ref Expression
1 2arympt.f 𝐹 = ( 𝑥 ∈ ( 𝑋m { 0 , 1 } ) ↦ ( ( 𝑥 ‘ 0 ) 𝑂 ( 𝑥 ‘ 1 ) ) )
2 simplr ( ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋m { 0 , 1 } ) ) → 𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
3 elmapi ( 𝑥 ∈ ( 𝑋m { 0 , 1 } ) → 𝑥 : { 0 , 1 } ⟶ 𝑋 )
4 c0ex 0 ∈ V
5 4 prid1 0 ∈ { 0 , 1 }
6 5 a1i ( 𝑥 ∈ ( 𝑋m { 0 , 1 } ) → 0 ∈ { 0 , 1 } )
7 3 6 ffvelrnd ( 𝑥 ∈ ( 𝑋m { 0 , 1 } ) → ( 𝑥 ‘ 0 ) ∈ 𝑋 )
8 7 adantl ( ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋m { 0 , 1 } ) ) → ( 𝑥 ‘ 0 ) ∈ 𝑋 )
9 1ex 1 ∈ V
10 9 prid2 1 ∈ { 0 , 1 }
11 10 a1i ( 𝑥 ∈ ( 𝑋m { 0 , 1 } ) → 1 ∈ { 0 , 1 } )
12 3 11 ffvelrnd ( 𝑥 ∈ ( 𝑋m { 0 , 1 } ) → ( 𝑥 ‘ 1 ) ∈ 𝑋 )
13 12 adantl ( ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋m { 0 , 1 } ) ) → ( 𝑥 ‘ 1 ) ∈ 𝑋 )
14 2 8 13 fovrnd ( ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ 𝑥 ∈ ( 𝑋m { 0 , 1 } ) ) → ( ( 𝑥 ‘ 0 ) 𝑂 ( 𝑥 ‘ 1 ) ) ∈ 𝑋 )
15 14 1 fmptd ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → 𝐹 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 )
16 2aryfvalel ( 𝑋𝑉 → ( 𝐹 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ) )
17 16 adantr ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝐹 ∈ ( 2 -aryF 𝑋 ) ↔ 𝐹 : ( 𝑋m { 0 , 1 } ) ⟶ 𝑋 ) )
18 15 17 mpbird ( ( 𝑋𝑉𝑂 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → 𝐹 ∈ ( 2 -aryF 𝑋 ) )