Metamath Proof Explorer


Theorem 2arympt

Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024)

Ref Expression
Hypothesis 2arympt.f F = x X 0 1 x 0 O x 1
Assertion 2arympt Could not format assertion : No typesetting found for |- ( ( X e. V /\ O : ( X X. X ) --> X ) -> F e. ( 2 -aryF X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 2arympt.f F = x X 0 1 x 0 O x 1
2 simplr X V O : X × X X x X 0 1 O : X × X X
3 elmapi x X 0 1 x : 0 1 X
4 c0ex 0 V
5 4 prid1 0 0 1
6 5 a1i x X 0 1 0 0 1
7 3 6 ffvelrnd x X 0 1 x 0 X
8 7 adantl X V O : X × X X x X 0 1 x 0 X
9 1ex 1 V
10 9 prid2 1 0 1
11 10 a1i x X 0 1 1 0 1
12 3 11 ffvelrnd x X 0 1 x 1 X
13 12 adantl X V O : X × X X x X 0 1 x 1 X
14 2 8 13 fovrnd X V O : X × X X x X 0 1 x 0 O x 1 X
15 14 1 fmptd X V O : X × X X F : X 0 1 X
16 2aryfvalel Could not format ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) : No typesetting found for |- ( X e. V -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) with typecode |-
17 16 adantr Could not format ( ( X e. V /\ O : ( X X. X ) --> X ) -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) : No typesetting found for |- ( ( X e. V /\ O : ( X X. X ) --> X ) -> ( F e. ( 2 -aryF X ) <-> F : ( X ^m { 0 , 1 } ) --> X ) ) with typecode |-
18 15 17 mpbird Could not format ( ( X e. V /\ O : ( X X. X ) --> X ) -> F e. ( 2 -aryF X ) ) : No typesetting found for |- ( ( X e. V /\ O : ( X X. X ) --> X ) -> F e. ( 2 -aryF X ) ) with typecode |-