Metamath Proof Explorer


Theorem 2arympt

Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024)

Ref Expression
Hypothesis 2arympt.f F = x X 0 1 x 0 O x 1
Assertion 2arympt X V O : X × X X F 2 -aryF X

Proof

Step Hyp Ref Expression
1 2arympt.f F = x X 0 1 x 0 O x 1
2 simplr X V O : X × X X x X 0 1 O : X × X X
3 elmapi x X 0 1 x : 0 1 X
4 c0ex 0 V
5 4 prid1 0 0 1
6 5 a1i x X 0 1 0 0 1
7 3 6 ffvelcdmd x X 0 1 x 0 X
8 7 adantl X V O : X × X X x X 0 1 x 0 X
9 1ex 1 V
10 9 prid2 1 0 1
11 10 a1i x X 0 1 1 0 1
12 3 11 ffvelcdmd x X 0 1 x 1 X
13 12 adantl X V O : X × X X x X 0 1 x 1 X
14 2 8 13 fovcdmd X V O : X × X X x X 0 1 x 0 O x 1 X
15 14 1 fmptd X V O : X × X X F : X 0 1 X
16 2aryfvalel X V F 2 -aryF X F : X 0 1 X
17 16 adantr X V O : X × X X F 2 -aryF X F : X 0 1 X
18 15 17 mpbird X V O : X × X X F 2 -aryF X