Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
N-ary functions
2arympt
Next ⟩
2arymptfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
2arympt
Description:
A binary (endo)function in maps-to notation.
(Contributed by
AV
, 20-May-2024)
Ref
Expression
Hypothesis
2arympt.f
⊢
F
=
x
∈
X
0
1
⟼
x
⁡
0
O
x
⁡
1
Assertion
2arympt
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
→
F
∈
2
-aryF
X
Proof
Step
Hyp
Ref
Expression
1
2arympt.f
⊢
F
=
x
∈
X
0
1
⟼
x
⁡
0
O
x
⁡
1
2
simplr
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
∧
x
∈
X
0
1
→
O
:
X
×
X
⟶
X
3
elmapi
⊢
x
∈
X
0
1
→
x
:
0
1
⟶
X
4
c0ex
⊢
0
∈
V
5
4
prid1
⊢
0
∈
0
1
6
5
a1i
⊢
x
∈
X
0
1
→
0
∈
0
1
7
3
6
ffvelcdmd
⊢
x
∈
X
0
1
→
x
⁡
0
∈
X
8
7
adantl
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
∧
x
∈
X
0
1
→
x
⁡
0
∈
X
9
1ex
⊢
1
∈
V
10
9
prid2
⊢
1
∈
0
1
11
10
a1i
⊢
x
∈
X
0
1
→
1
∈
0
1
12
3
11
ffvelcdmd
⊢
x
∈
X
0
1
→
x
⁡
1
∈
X
13
12
adantl
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
∧
x
∈
X
0
1
→
x
⁡
1
∈
X
14
2
8
13
fovcdmd
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
∧
x
∈
X
0
1
→
x
⁡
0
O
x
⁡
1
∈
X
15
14
1
fmptd
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
→
F
:
X
0
1
⟶
X
16
2aryfvalel
⊢
X
∈
V
→
F
∈
2
-aryF
X
↔
F
:
X
0
1
⟶
X
17
16
adantr
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
→
F
∈
2
-aryF
X
↔
F
:
X
0
1
⟶
X
18
15
17
mpbird
⊢
X
∈
V
∧
O
:
X
×
X
⟶
X
→
F
∈
2
-aryF
X