Metamath Proof Explorer


Theorem 2eu5

Description: An alternate definition of double existential uniqueness (see 2eu4 ). A mistake sometimes made in the literature is to use E! x E! y to mean "exactly one x and exactly one y ". (For example, see Proposition 7.53 of TakeutiZaring p. 53.) It turns out that this is actually a weaker assertion, as can be seen by expanding out the formal definitions. This theorem shows that the erroneous definition can be repaired by conjoining A. x E* y ph as an additional condition. The correct definition apparently has never been published ( E* means "there exists at most one"). (Contributed by NM, 26-Oct-2003) Avoid ax-13 . (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Assertion 2eu5
|- ( ( E! x E! y ph /\ A. x E* y ph ) <-> ( E. x E. y ph /\ E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) ) )

Proof

Step Hyp Ref Expression
1 2eu1v
 |-  ( A. x E* y ph -> ( E! x E! y ph <-> ( E! x E. y ph /\ E! y E. x ph ) ) )
2 1 pm5.32ri
 |-  ( ( E! x E! y ph /\ A. x E* y ph ) <-> ( ( E! x E. y ph /\ E! y E. x ph ) /\ A. x E* y ph ) )
3 eumo
 |-  ( E! y E. x ph -> E* y E. x ph )
4 3 adantl
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) -> E* y E. x ph )
5 2moexv
 |-  ( E* y E. x ph -> A. x E* y ph )
6 4 5 syl
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) -> A. x E* y ph )
7 6 pm4.71i
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) <-> ( ( E! x E. y ph /\ E! y E. x ph ) /\ A. x E* y ph ) )
8 2eu4
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) <-> ( E. x E. y ph /\ E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) ) )
9 2 7 8 3bitr2i
 |-  ( ( E! x E! y ph /\ A. x E* y ph ) <-> ( E. x E. y ph /\ E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) ) )