Metamath Proof Explorer


Theorem 2exim

Description: Theorem *11.34 in WhiteheadRussell p. 162. Theorem 19.22 of Margaris p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2exim
|- ( A. x A. y ( ph -> ps ) -> ( E. x E. y ph -> E. x E. y ps ) )

Proof

Step Hyp Ref Expression
1 exim
 |-  ( A. y ( ph -> ps ) -> ( E. y ph -> E. y ps ) )
2 1 aleximi
 |-  ( A. x A. y ( ph -> ps ) -> ( E. x E. y ph -> E. x E. y ps ) )