| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgslem2.n |  |-  N = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) | 
						
							| 2 |  | simpl |  |-  ( ( P e. Prime /\ -. 2 || P ) -> P e. Prime ) | 
						
							| 3 |  | elsng |  |-  ( P e. Prime -> ( P e. { 2 } <-> P = 2 ) ) | 
						
							| 4 |  | z2even |  |-  2 || 2 | 
						
							| 5 |  | breq2 |  |-  ( P = 2 -> ( 2 || P <-> 2 || 2 ) ) | 
						
							| 6 | 4 5 | mpbiri |  |-  ( P = 2 -> 2 || P ) | 
						
							| 7 | 3 6 | biimtrdi |  |-  ( P e. Prime -> ( P e. { 2 } -> 2 || P ) ) | 
						
							| 8 | 7 | con3dimp |  |-  ( ( P e. Prime /\ -. 2 || P ) -> -. P e. { 2 } ) | 
						
							| 9 | 2 8 | eldifd |  |-  ( ( P e. Prime /\ -. 2 || P ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 10 |  | oddprm |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 11 | 10 | nnzd |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. ZZ ) | 
						
							| 12 | 9 11 | syl |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( ( P - 1 ) / 2 ) e. ZZ ) | 
						
							| 13 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 14 | 13 | zred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 15 |  | 4re |  |-  4 e. RR | 
						
							| 16 | 15 | a1i |  |-  ( P e. Prime -> 4 e. RR ) | 
						
							| 17 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 18 | 17 | a1i |  |-  ( P e. Prime -> 4 =/= 0 ) | 
						
							| 19 | 14 16 18 | redivcld |  |-  ( P e. Prime -> ( P / 4 ) e. RR ) | 
						
							| 20 | 19 | flcld |  |-  ( P e. Prime -> ( |_ ` ( P / 4 ) ) e. ZZ ) | 
						
							| 21 | 20 | adantr |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( |_ ` ( P / 4 ) ) e. ZZ ) | 
						
							| 22 | 12 21 | zsubcld |  |-  ( ( P e. Prime /\ -. 2 || P ) -> ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) e. ZZ ) | 
						
							| 23 | 1 22 | eqeltrid |  |-  ( ( P e. Prime /\ -. 2 || P ) -> N e. ZZ ) |