| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lgslem2.n |
|- N = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) |
| 2 |
|
oveq1 |
|- ( P = ( ( 8 x. K ) + 1 ) -> ( P - 1 ) = ( ( ( 8 x. K ) + 1 ) - 1 ) ) |
| 3 |
2
|
oveq1d |
|- ( P = ( ( 8 x. K ) + 1 ) -> ( ( P - 1 ) / 2 ) = ( ( ( ( 8 x. K ) + 1 ) - 1 ) / 2 ) ) |
| 4 |
|
fvoveq1 |
|- ( P = ( ( 8 x. K ) + 1 ) -> ( |_ ` ( P / 4 ) ) = ( |_ ` ( ( ( 8 x. K ) + 1 ) / 4 ) ) ) |
| 5 |
3 4
|
oveq12d |
|- ( P = ( ( 8 x. K ) + 1 ) -> ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) = ( ( ( ( ( 8 x. K ) + 1 ) - 1 ) / 2 ) - ( |_ ` ( ( ( 8 x. K ) + 1 ) / 4 ) ) ) ) |
| 6 |
1 5
|
eqtrid |
|- ( P = ( ( 8 x. K ) + 1 ) -> N = ( ( ( ( ( 8 x. K ) + 1 ) - 1 ) / 2 ) - ( |_ ` ( ( ( 8 x. K ) + 1 ) / 4 ) ) ) ) |
| 7 |
|
8nn0 |
|- 8 e. NN0 |
| 8 |
7
|
a1i |
|- ( K e. NN0 -> 8 e. NN0 ) |
| 9 |
|
id |
|- ( K e. NN0 -> K e. NN0 ) |
| 10 |
8 9
|
nn0mulcld |
|- ( K e. NN0 -> ( 8 x. K ) e. NN0 ) |
| 11 |
10
|
nn0cnd |
|- ( K e. NN0 -> ( 8 x. K ) e. CC ) |
| 12 |
|
pncan1 |
|- ( ( 8 x. K ) e. CC -> ( ( ( 8 x. K ) + 1 ) - 1 ) = ( 8 x. K ) ) |
| 13 |
11 12
|
syl |
|- ( K e. NN0 -> ( ( ( 8 x. K ) + 1 ) - 1 ) = ( 8 x. K ) ) |
| 14 |
13
|
oveq1d |
|- ( K e. NN0 -> ( ( ( ( 8 x. K ) + 1 ) - 1 ) / 2 ) = ( ( 8 x. K ) / 2 ) ) |
| 15 |
|
4cn |
|- 4 e. CC |
| 16 |
|
2cn |
|- 2 e. CC |
| 17 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 18 |
15 16 17
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
| 19 |
18
|
eqcomi |
|- 8 = ( 2 x. 4 ) |
| 20 |
19
|
a1i |
|- ( K e. NN0 -> 8 = ( 2 x. 4 ) ) |
| 21 |
20
|
oveq1d |
|- ( K e. NN0 -> ( 8 x. K ) = ( ( 2 x. 4 ) x. K ) ) |
| 22 |
16
|
a1i |
|- ( K e. NN0 -> 2 e. CC ) |
| 23 |
15
|
a1i |
|- ( K e. NN0 -> 4 e. CC ) |
| 24 |
|
nn0cn |
|- ( K e. NN0 -> K e. CC ) |
| 25 |
22 23 24
|
mulassd |
|- ( K e. NN0 -> ( ( 2 x. 4 ) x. K ) = ( 2 x. ( 4 x. K ) ) ) |
| 26 |
21 25
|
eqtrd |
|- ( K e. NN0 -> ( 8 x. K ) = ( 2 x. ( 4 x. K ) ) ) |
| 27 |
26
|
oveq1d |
|- ( K e. NN0 -> ( ( 8 x. K ) / 2 ) = ( ( 2 x. ( 4 x. K ) ) / 2 ) ) |
| 28 |
|
4nn0 |
|- 4 e. NN0 |
| 29 |
28
|
a1i |
|- ( K e. NN0 -> 4 e. NN0 ) |
| 30 |
29 9
|
nn0mulcld |
|- ( K e. NN0 -> ( 4 x. K ) e. NN0 ) |
| 31 |
30
|
nn0cnd |
|- ( K e. NN0 -> ( 4 x. K ) e. CC ) |
| 32 |
|
2ne0 |
|- 2 =/= 0 |
| 33 |
32
|
a1i |
|- ( K e. NN0 -> 2 =/= 0 ) |
| 34 |
31 22 33
|
divcan3d |
|- ( K e. NN0 -> ( ( 2 x. ( 4 x. K ) ) / 2 ) = ( 4 x. K ) ) |
| 35 |
14 27 34
|
3eqtrd |
|- ( K e. NN0 -> ( ( ( ( 8 x. K ) + 1 ) - 1 ) / 2 ) = ( 4 x. K ) ) |
| 36 |
|
1cnd |
|- ( K e. NN0 -> 1 e. CC ) |
| 37 |
|
4ne0 |
|- 4 =/= 0 |
| 38 |
15 37
|
pm3.2i |
|- ( 4 e. CC /\ 4 =/= 0 ) |
| 39 |
38
|
a1i |
|- ( K e. NN0 -> ( 4 e. CC /\ 4 =/= 0 ) ) |
| 40 |
|
divdir |
|- ( ( ( 8 x. K ) e. CC /\ 1 e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( ( 8 x. K ) + 1 ) / 4 ) = ( ( ( 8 x. K ) / 4 ) + ( 1 / 4 ) ) ) |
| 41 |
11 36 39 40
|
syl3anc |
|- ( K e. NN0 -> ( ( ( 8 x. K ) + 1 ) / 4 ) = ( ( ( 8 x. K ) / 4 ) + ( 1 / 4 ) ) ) |
| 42 |
|
8cn |
|- 8 e. CC |
| 43 |
42
|
a1i |
|- ( K e. NN0 -> 8 e. CC ) |
| 44 |
|
div23 |
|- ( ( 8 e. CC /\ K e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 8 x. K ) / 4 ) = ( ( 8 / 4 ) x. K ) ) |
| 45 |
43 24 39 44
|
syl3anc |
|- ( K e. NN0 -> ( ( 8 x. K ) / 4 ) = ( ( 8 / 4 ) x. K ) ) |
| 46 |
17
|
eqcomi |
|- 8 = ( 4 x. 2 ) |
| 47 |
46
|
oveq1i |
|- ( 8 / 4 ) = ( ( 4 x. 2 ) / 4 ) |
| 48 |
16 15 37
|
divcan3i |
|- ( ( 4 x. 2 ) / 4 ) = 2 |
| 49 |
47 48
|
eqtri |
|- ( 8 / 4 ) = 2 |
| 50 |
49
|
a1i |
|- ( K e. NN0 -> ( 8 / 4 ) = 2 ) |
| 51 |
50
|
oveq1d |
|- ( K e. NN0 -> ( ( 8 / 4 ) x. K ) = ( 2 x. K ) ) |
| 52 |
45 51
|
eqtrd |
|- ( K e. NN0 -> ( ( 8 x. K ) / 4 ) = ( 2 x. K ) ) |
| 53 |
52
|
oveq1d |
|- ( K e. NN0 -> ( ( ( 8 x. K ) / 4 ) + ( 1 / 4 ) ) = ( ( 2 x. K ) + ( 1 / 4 ) ) ) |
| 54 |
41 53
|
eqtrd |
|- ( K e. NN0 -> ( ( ( 8 x. K ) + 1 ) / 4 ) = ( ( 2 x. K ) + ( 1 / 4 ) ) ) |
| 55 |
54
|
fveq2d |
|- ( K e. NN0 -> ( |_ ` ( ( ( 8 x. K ) + 1 ) / 4 ) ) = ( |_ ` ( ( 2 x. K ) + ( 1 / 4 ) ) ) ) |
| 56 |
|
1lt4 |
|- 1 < 4 |
| 57 |
|
2nn0 |
|- 2 e. NN0 |
| 58 |
57
|
a1i |
|- ( K e. NN0 -> 2 e. NN0 ) |
| 59 |
58 9
|
nn0mulcld |
|- ( K e. NN0 -> ( 2 x. K ) e. NN0 ) |
| 60 |
59
|
nn0zd |
|- ( K e. NN0 -> ( 2 x. K ) e. ZZ ) |
| 61 |
|
1nn0 |
|- 1 e. NN0 |
| 62 |
61
|
a1i |
|- ( K e. NN0 -> 1 e. NN0 ) |
| 63 |
|
4nn |
|- 4 e. NN |
| 64 |
63
|
a1i |
|- ( K e. NN0 -> 4 e. NN ) |
| 65 |
|
adddivflid |
|- ( ( ( 2 x. K ) e. ZZ /\ 1 e. NN0 /\ 4 e. NN ) -> ( 1 < 4 <-> ( |_ ` ( ( 2 x. K ) + ( 1 / 4 ) ) ) = ( 2 x. K ) ) ) |
| 66 |
60 62 64 65
|
syl3anc |
|- ( K e. NN0 -> ( 1 < 4 <-> ( |_ ` ( ( 2 x. K ) + ( 1 / 4 ) ) ) = ( 2 x. K ) ) ) |
| 67 |
56 66
|
mpbii |
|- ( K e. NN0 -> ( |_ ` ( ( 2 x. K ) + ( 1 / 4 ) ) ) = ( 2 x. K ) ) |
| 68 |
55 67
|
eqtrd |
|- ( K e. NN0 -> ( |_ ` ( ( ( 8 x. K ) + 1 ) / 4 ) ) = ( 2 x. K ) ) |
| 69 |
35 68
|
oveq12d |
|- ( K e. NN0 -> ( ( ( ( ( 8 x. K ) + 1 ) - 1 ) / 2 ) - ( |_ ` ( ( ( 8 x. K ) + 1 ) / 4 ) ) ) = ( ( 4 x. K ) - ( 2 x. K ) ) ) |
| 70 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 71 |
70
|
eqcomi |
|- 4 = ( 2 x. 2 ) |
| 72 |
71
|
a1i |
|- ( K e. NN0 -> 4 = ( 2 x. 2 ) ) |
| 73 |
72
|
oveq1d |
|- ( K e. NN0 -> ( 4 x. K ) = ( ( 2 x. 2 ) x. K ) ) |
| 74 |
22 22 24
|
mulassd |
|- ( K e. NN0 -> ( ( 2 x. 2 ) x. K ) = ( 2 x. ( 2 x. K ) ) ) |
| 75 |
73 74
|
eqtrd |
|- ( K e. NN0 -> ( 4 x. K ) = ( 2 x. ( 2 x. K ) ) ) |
| 76 |
75
|
oveq1d |
|- ( K e. NN0 -> ( ( 4 x. K ) - ( 2 x. K ) ) = ( ( 2 x. ( 2 x. K ) ) - ( 2 x. K ) ) ) |
| 77 |
59
|
nn0cnd |
|- ( K e. NN0 -> ( 2 x. K ) e. CC ) |
| 78 |
|
2txmxeqx |
|- ( ( 2 x. K ) e. CC -> ( ( 2 x. ( 2 x. K ) ) - ( 2 x. K ) ) = ( 2 x. K ) ) |
| 79 |
77 78
|
syl |
|- ( K e. NN0 -> ( ( 2 x. ( 2 x. K ) ) - ( 2 x. K ) ) = ( 2 x. K ) ) |
| 80 |
69 76 79
|
3eqtrd |
|- ( K e. NN0 -> ( ( ( ( ( 8 x. K ) + 1 ) - 1 ) / 2 ) - ( |_ ` ( ( ( 8 x. K ) + 1 ) / 4 ) ) ) = ( 2 x. K ) ) |
| 81 |
6 80
|
sylan9eqr |
|- ( ( K e. NN0 /\ P = ( ( 8 x. K ) + 1 ) ) -> N = ( 2 x. K ) ) |