Metamath Proof Explorer


Theorem 2lt5

Description: 2 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 2lt5
|- 2 < 5

Proof

Step Hyp Ref Expression
1 2lt4
 |-  2 < 4
2 4lt5
 |-  4 < 5
3 2re
 |-  2 e. RR
4 4re
 |-  4 e. RR
5 5re
 |-  5 e. RR
6 3 4 5 lttri
 |-  ( ( 2 < 4 /\ 4 < 5 ) -> 2 < 5 )
7 1 2 6 mp2an
 |-  2 < 5