Metamath Proof Explorer


Theorem 2lt8

Description: 2 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 2lt8
|- 2 < 8

Proof

Step Hyp Ref Expression
1 2lt3
 |-  2 < 3
2 3lt8
 |-  3 < 8
3 2re
 |-  2 e. RR
4 3re
 |-  3 e. RR
5 8re
 |-  8 e. RR
6 3 4 5 lttri
 |-  ( ( 2 < 3 /\ 3 < 8 ) -> 2 < 8 )
7 1 2 6 mp2an
 |-  2 < 8