Metamath Proof Explorer


Theorem 2stdpc5

Description: A double stdpc5 (one direction of PM*11.3). See also 2stdpc4 and 19.21vv . (Contributed by BJ, 15-Sep-2018) (Proof modification is discouraged.)

Ref Expression
Hypotheses 2stdpc5.1
|- F/ x ph
2stdpc5.2
|- F/ y ph
Assertion 2stdpc5
|- ( A. x A. y ( ph -> ps ) -> ( ph -> A. x A. y ps ) )

Proof

Step Hyp Ref Expression
1 2stdpc5.1
 |-  F/ x ph
2 2stdpc5.2
 |-  F/ y ph
3 2 stdpc5
 |-  ( A. y ( ph -> ps ) -> ( ph -> A. y ps ) )
4 3 alimi
 |-  ( A. x A. y ( ph -> ps ) -> A. x ( ph -> A. y ps ) )
5 1 stdpc5
 |-  ( A. x ( ph -> A. y ps ) -> ( ph -> A. x A. y ps ) )
6 4 5 syl
 |-  ( A. x A. y ( ph -> ps ) -> ( ph -> A. x A. y ps ) )