Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3anandirs.1 | |- ( ( ( ph /\ th ) /\ ( ps /\ th ) /\ ( ch /\ th ) ) -> ta ) |
|
| Assertion | 3anandirs | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anandirs.1 | |- ( ( ( ph /\ th ) /\ ( ps /\ th ) /\ ( ch /\ th ) ) -> ta ) |
|
| 2 | simpl1 | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ph ) |
|
| 3 | simpr | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> th ) |
|
| 4 | simpl2 | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ps ) |
|
| 5 | simpl3 | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ch ) |
|
| 6 | 2 3 4 3 5 3 1 | syl222anc | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta ) |