| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3dec.a |  |-  A e. NN0 | 
						
							| 2 |  | 3dec.b |  |-  B e. NN0 | 
						
							| 3 |  | dfdec10 |  |-  ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) | 
						
							| 4 |  | dfdec10 |  |-  ; A B = ( ( ; 1 0 x. A ) + B ) | 
						
							| 5 | 4 | oveq2i |  |-  ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) | 
						
							| 6 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 7 | 6 | nncni |  |-  ; 1 0 e. CC | 
						
							| 8 | 1 | nn0cni |  |-  A e. CC | 
						
							| 9 | 7 8 | mulcli |  |-  ( ; 1 0 x. A ) e. CC | 
						
							| 10 | 2 | nn0cni |  |-  B e. CC | 
						
							| 11 | 7 9 10 | adddii |  |-  ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) | 
						
							| 12 | 5 11 | eqtri |  |-  ( ; 1 0 x. ; A B ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) | 
						
							| 13 | 7 7 8 | mulassi |  |-  ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; 1 0 x. ( ; 1 0 x. A ) ) | 
						
							| 14 | 13 | eqcomi |  |-  ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ( ; 1 0 x. ; 1 0 ) x. A ) | 
						
							| 15 | 7 | sqvali |  |-  ( ; 1 0 ^ 2 ) = ( ; 1 0 x. ; 1 0 ) | 
						
							| 16 | 15 | eqcomi |  |-  ( ; 1 0 x. ; 1 0 ) = ( ; 1 0 ^ 2 ) | 
						
							| 17 | 16 | oveq1i |  |-  ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ( ; 1 0 ^ 2 ) x. A ) | 
						
							| 18 | 14 17 | eqtri |  |-  ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ( ; 1 0 ^ 2 ) x. A ) | 
						
							| 19 | 18 | oveq1i |  |-  ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) | 
						
							| 20 | 12 19 | eqtri |  |-  ( ; 1 0 x. ; A B ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) | 
						
							| 21 | 20 | oveq1i |  |-  ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) | 
						
							| 22 | 3 21 | eqtri |  |-  ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |